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tradeoffs when there is a mismatch between the assumed and actual levels of
uncertainty. The applicability of the robust procedure to non-Gaussian noise
is also discussed.

Next, quickest detection procedures for the fusion processor of a
distributed detection system are investigated. An optimal procedure is
derived and compared to several alternmative methods which are easier to
implement in that they are recursive and require less computation. A simple
method for choosing the thresholds of the local detectors is given, and a
sensitivity analysis reveals that this choice results in overall system
performance that is close to optimal. Lastly, performance curves are
presented which illustrate the tradeoff between performance gain and channel
bandwidth.

Finally, an adaptive procedure is proposed which is suitable for the
disorder problem when a jump of unknown magnitude occurs in the mean of a
random process. It is shown that this test exhibits asymptotic performance
that is similar to the test which is optimal for known jump magnitude. The
adaptive procedure is implemented to detect a change in the rate parameter
of a Poisson process.
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Chapter 1

Introduction

1.1 Motivation

This dissertation focuses on sequential techniques for detecting a change, or disorder,
in the statistics of a random process. A disorder can be as simple as a shift in the
mean from one constant to another, or as complex as a sudden change in the dynamic
profile of multiple parameters. In either case, the overall goal is to determine as soon
as possible that the change occurred, while at the same time minimizing the chance
of falsely signalling the occurrence of a disorder in the absence of a change. In other
words, we are seeking quickest detection procedures.

Many signal processing techniques assume that the parameters that characterize
the data are either stationary or only slowly time-varying. However, there are numer-
ous situations where this assumption does not hold. In such cases, quickest detection
procedures can be used to signal the change so that some corrective action can be
taken. Any area in which abrupt changes in the nature of a signal occur can poten-
tially benefit from the use of quickest detection procedures. Many such examples can
be found in the recent book by Basseville and Nikiforov [1].

The selection of a procedure for disorder detection is largely dependent on the

particular application, as well as the amount of a priori information about the data.
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In this thesis, three types of quickest detection problems are investigated: robust
techniques which are suitable when the noise distributions are only partially known,
quickest detection procedures designed for the fusion processor of a distributed de-
tection system, and an adaptive procedure suitable for the case when the disorder is
a jump in the mean of unknown magnitude. In each case, we are especially interested

in seeking procedures that can be implemented recursively, making them suitable for

on-line use.

1.2 Thesis Content

The body of this dissertation is divided into five chapters. Chapter 2 lays the founda-
tion for the remainder of the thesis, as much of the notation and definitions are used
in subsequent chapters. The disorder problem is presented formally, and previous
work that is central to the field is reviewed. Many of the results of this work are
represented by various performance curves, obtained either by direct computation or
via Monte Carlo methods; the algorithms used to generate these plots are presented
here.

Chapter 3 begins a study of robust quickest detectors. In many cases where
quickest detection techniques would be desirable, the underlying statistical model may
not be precisely known. Simply modelling the noise as Gaussian in this situation may
result in the following problems: (1) the actual false alarm rate may differ significantly
from the desired value, and (2) detectability may be sacrificed by simply increasing
the decision threshold. In order to alleviate these problems, we derive the minimax
robust detector based upon a lower bound on the asymptotic performance of Page’s
test. The robust procedure is derived for the epsilon-contaminated and total variation
classes, both of which are useful in modelling real-world uncertainty. The performance

of the robust procedure is compared to several nonparametric versions of Page’s test,
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which were studied in detail in [2]. The minimax robust procedure is also derived for
the small-signal case. It is demonstrated that the robust procedure results in good
performance over a wide range of noise distributions.

In Chapter 4, we consider the minimax robust quickest detection problem when
the noise distribution is multidimensional Gaussian. It is shown that this problem
is closely related to the previous work of Verdu and Poor [3] on minimax robust
matched filtering, and that the solution to the latter problem can be used to solve
the former. The robust procedure is derived for both signal and noise uncertainty,
where the uncertainty is modelled as the deviation from some nominal parameters.
The application of the robust quickest detector in multivariate non-Gaussian noise is
also discussed.

In Chapter 5, we study the problem of determining as quickly as possible the
occurrence of a disorder in a decentralized decision environment. Here, a number of
sensors are used to monitor some phenomenon. The decision as to the presence or
absence of a disorder is made at a central processor, or fusion center, based upon a
summarized version of the sensor data. The processor receives a set of local binary
decisions at regular intervals, where each decision indicates either “disorder present”
or “no disorder present.” The optimal procedure in the maximum likelihood sense is
derived for this problem. For each set of local decisions, the fusion center must perform
a search over all possible disorder times, a task which could become prohibitive when
the local decisions are based on a large number of samples. It is shown that a
small simplification can be made to eliminate the need for this search; this yields
a suboptimal procedure which, nevertheless, exhibits performance nearly identical to
the optimal version.

In perhaps the most significant contribution of this chapter, we propose a new
simple method for choosing the thresholds of the local detectors based upon a lower

bound on the asymptotic performance measure, which we derive for the distributed
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detection problem. Direct optimization of this performance would require the solution
of a set of constrained nonlinear equations. By comparison, the optimization of the
lower bound on asymptotic performance is easy, requiring little computation. A
sensitivity analysis reveals that the new method results in overall system performance
which is close to optimal; this is particularly true when the false alarm rate is low,
a condition which is desirable in many realistic scenarios. Each local decision is
generated based upon a set of sequential sensor samples. In general, as the number of
samples per local decision increases, both the required channel bandwidth to transmit
the local decisions and the relative performance of the overall procedure decrease. We
conclude the chapter by assessing this tradeoff. While perhaps contrary to intuition,
it is shown that for the weak signal case, sending the local decision as frequently as
possible does not result in the best performance.

In Chapter 6, we investigate the disorder problem when a jump of unknown mag-
- nitude occurs in the mean of a random process. An adaptive procedure is proposed
that consists of two stages which operate sequentially: the first is a version of Page’s
test designed for a jump of minimum magnitude; the second is an adaptive version
of the classical Wald sequential probability ratio test. The rationale behind such
a test lies in the difficulty of reliably estimating the pre- or post-disorder means in
the vicinity of the disorder time. For example, an estimate of the pre-disorder mean
could likely become corrupted from samples from the post-disorder hypothesis, since
the disorder time is unknown. The two-stage procedure provides a means to separate
the two hypotheses (with some probability of error) so that the estimate of the mean
after the disorder will be more reliable. It is shown that the adaptive test has similar
asymptotic performance to the test which is optimal for known jump size. It also
has the advantage of being recursive, more easily lending itself to on-line implemen-
tations. The procedure is implemented to detect a change in the rate parameter of a

Poisson process. However, it is also applicable to other distributions.
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Finally, the original contributions of this thesis are reviewed in Chapter 7.

1.3 References

[1] M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes, Prentice Hall,
Englewood Cliffs, NJ, 1993.

[2] B. Broder, Quickest Detection Procedures and Transient Signal Detection, Ph.D.
Thesis, Princeton University, 1990.

[3] S. Verdu and H. V. Poor, “Minimax robust discrete-time matched filters,” IEEE
Trans. Commaun., vol. COM-31, no. 2, Feb. 1983.




Chapter 2

Quickest Detection: A Review

The main body of this dissertation, Chapters 3 through 6, focuses on various problems
that fall into the general category of quickest detection. The purpose of this chapter is
to review some of the previous work in this area, as well as to introduce the definitions
and notation that will be used throughout this thesis. Thus, this chapter will serve
as a major reference for each of the subsequent chapters.

In Section 2.1, the disorder problem is first presented in a very general sense, and
the goal of quickest detection is stated. Some of the assumptions that will be made
throughout this thesis are also given. Section 2.2 introduces a procedure for on-line
disorder detection known as Page’s test; the optimality of this test is also discussed.
In Section 2.3, we define the asymptotic performance measure for Page’s test. This
measure is a very useful quantity, and is a starting point for many of the results
in this thesis. Section 2.4 presents several additional methods that may be used to
compute the performance of quickest detection procedures. Finally, in Section 2.5,
" several extensions of quickest detection procedures to more complicated models are
presented.

Much of the material in this chapter can be found in Chapter 2 of the Ph.D. thesis
of Broder [5] and in the recent book by Basseville and Nikiforov [2].
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2.1 The Disorder Problem

Consider a sequence of random variables X;, X,, ..., where random variable X; has
conditional density f(X; | 8; i), Xi=X,... ,X;; here, 6 is some scalar or vector
quantity that parameterizes the conditional density. Suppose that § = 6, for 1+ =
1,...,m—1,and § = 6; for: =m,m +1,.... In other words, the random variables
undergo a disorder at time instant m, which is called the disorder time. The goal is
to detect the change as soon as possible. ! Thus, one wishes to detect a shift from

hypothesis Hy to hypothesis H;, where
Ho : Xi~ f(X:|80;X7")

H @ X~ f(X:] 65X
The above problem is phrased in terms of an on-line framework: the samples are
received sequentially, and a decision regarding the occurrence of a disorder is made
at each sample time. 2
The change detection problem can alternatively be formulated using an off-line

approach, where the decision is based on a finite “block” of samples X3, X5, ..., Xn.

The problem here is to determine which of the hypotheses
Ho : Xi~ f(Xi|00; XY, fori=1,...,n
H : Xi~ f(Xi|06; X5, fori=1,...,m—1
X; ~ f(X; ] 61;X7Y), fori=m,...,n
holds. The off-line problem can be useful in situations where either the size, n, of

the data window is small, or otherwise where there is ample computing power and

memory for data storage. However, in most engineering applications, one is interested

In this case, the disorder is a jump change in 8, but more general types of disorders may also
be considered; some examples will be given in Section 2.5.

2The hypotheses can be written more generally as a change in the distribution F(X; |6, Xf'l).
In this work, it is assumed throughout that the density functions exist, and so all of the expressions
will be written in terms of f(- | -).
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in procedures that require little memory and may be implemented sequentially. In
addition, it is sometimes the case that the disorder can be reliably detected using
fewer than the n samples contained in the fixed block of data. Various techniques for
off-line disorder detection are covered in [9]. However, in this thesis, we will consider

only the on-line problem.

The following assumptions will be made throughout the thesis:

e The disorder time m is unknown.
Two approaches are typically used in modelling the disorder time: the Bayesian
approach, where m is modelled as a random variable, and the maximum likeli-
hood (ML) approach, where m is taken to be unknown. The Bayesian approach
was first investigated in [18], and is based on the assumption that the prior
probability of the disorder time is known. On the other hand, the ML approach
is more realistic when little is known about the disorder time, such as in situa-
tions where the waiting time before the disorder occurs is potentially very long.
Examples include radar warning systems, where the threat (e.g., a missile) sud-
denly appears over the horizon, and communication link monitoring [16], where
the channel characteristics may change suddenly due to some defect. In such

instances, it may not be possible to accurately characterize the distribution of

m.

e The observations are independent

In this case, the on-line hypotheses become
Hy @ Xi~ f(Xi l 60) 2 fO(Xi)
Hy @ Xi~ f(X:]6:) 2 fi(X2)

This assumption is made to simplify the problem, and will result in simpler

algorithms. Examples of applications of quickest detection on uncorrelated data
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include the detection of failures in linear systems via the monitoring of the
innovations process [21], and the detection of changes in the drift in systems

that can be modelled as a stochastic differential equation of the following form:

where
6, — Oo, t<to
b1, 1210
and {W,} is a Weiner process [22]. ® The latter can be used to model radar
return, where the change in drift occurs when a target emerges. Other work

investigates the problem of detecting disorders when the data is correlated. Ex-

amples where such problems arise are given in Section 2.5.

e The disorder is a jump change in the mean

We consider the case where the parameter  is simply the mean of the process,
and that @ undergoes a one-time positive jump from 6, to ; > 6. Not only
does this assumption simplify the problem, but it is also a reasonable model for
a large number of physical systems of interest. For example, the sudden failure
of a device in a system may lead to a step change in the output. Also, sudden
changes in spectral energy can be detected by testing for jumps in the coefficients
of the energy spectral density [5]. Some examples involving more complicated

changes are given in Section 2.5.

3X, is uncorrelated when 8, is scalar. For the vector case, the observables will likely be correlated.
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2.2 Page’s Test

In 1954, E. S. Page [15] introduced the following sequential procedure for detecting a
shift from Hy to Hy. Define the cumulative sum (CUSUM) statistic
k
=) g(X:) (2.1)
=7 :
where g(z) = log #(=) with the convention that T; k = 0if > k. An alarm sounds

fo(=)?
(i.e., a disorder is declared) when the stopping time N occurs, where

N = inf {n |7~ min TE > h} (2.2)

and A > 0 is some threshold. This procedure i1s commonly known as Page’s test.
Intuitively, one can see that this procedure terminates when the difference of the
cumulative sum and its past minimum exceeds the threshold. It is easy to verify that
when g¢(-) is the log-likelihood ratio, then E[g(z)| Ho] < 0 < E[g(z)| H;]. * Therefore,
T 1s seen to have a drift which is negative before the disorder and positive afterwards,
and Page’s procedure reacts to this change in drift. An example illustrating this point
is shown in the upper plot of Figure 2.1.

Now consider the off-line version of the same problem discussed in Section 2.1. In
particular, recall the definition of the hypotheses Hy and H;. The ML procedure for
the off-line problem is to declare a disorder when the maximum of the log-likelihood

ratio between E and E over all possible disorder times exceeds a threshold; in other

4This is done by using the relationships 1 — % < logz < & — 1, which are sometimes referred to
as the “IT inequalities”. We have

Blg(e) | ] = [l 2 fo(e)as < [ (2 1) sy =0

and

s = s | 1 49 10

Equality holds only in the degenerate case where fo(z) = fi(z).
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Figure 2.1: Two versions of Page’s test.

words, declare a disorder in case

Fxp | Hy) _ = fi(X)
pax log m = pax ’z;n log f:(X;) > h (2.3)

It is not difficult to see that a sequential implementation of the above test, where a

disorder is declared when the stopping time

N =inf {n | lgnma.%cnz;g(X;) > h}

occurs, is equivalent to the procedure in (2.2), where again g is the log-likelihood
ratio. However, notice that with the off-line procedure, all past samples must be
available at each iteration, while the sequential test only requires the storage of the
past minimum of T7*. Thus, (2.2) can be interpreted as the on-line version of the ML

procedure for detecting the change.
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In [15], it is shown that an equivalent version of (2.2) is given by
N =inf{n | S, > h} (2.4)
where S, is generated by the recursion
Sp = max {Sn-1 + 9(X.),0} (2.5)

This version of Page’s test will be used exclusively throughout the thesis; it is illus-
trated in the lower plot of Figure 2.1. Notice that S, and I7* are exactly the same
after the disorder time, and that both procedures react when the upward drift ex-
ceeds the threshold . Like (2.2), this procedure is recursive and suitable for on-line
applications. This version also has the advantage that the test statistic S, always lies
in the the interval [0, h]. On the other hand, T7* can potentially become very large
in magnitude if the disorder occurs only after a long time; this could cause roundoft
errors if it were necessary to quantize the samples using only a few bits. Also, observe
that the test statistic in (2.5) can be interpreted as a repeated sequential probability
ratio test (SPRT) with the continuation region [0, k] in the following sense: if S, < 0
(i.e., the lower boundary is crossed), the statistic is reset to zero and a new SPRT
commences; if the upper boundary A is crossed, the test terminates and a disorder is
declared. It will be shown later that this interpretation can be useful in computing
the performance of Page’s test. °

It turns out that Page’s test implemented with g(z) = log ;—;g% not only can be
interpreted as a recursive ML procedure, but it is in fact the optimal procedure as
explained below. Let N denote the stopping time of any procedure designed to detect

the disorder. Define the following quantities:

T £ E,N

5In some cases the disorder is two-sided, such as a shift in the mean which may be either pesitive
or negative. The approach here is to implement two Page’s tests in parallel, one for each possible
change direction, and declare a disorder when an alarm sounds in either test. In general, K parallel
Page’s tests may be used whenever there are K alternative hypotheses, Hx, k= 1,..., K.
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D 2 sup ess supEy [(N-—k-l—l)+ | X1,y Xk—1 2 E.N
k>1

where Eq is the expectation under § = 85, and Eg, for k > 1, is the expectation under
the distribution of the observations when the change from 6, to 6; occurs at time k.
T is called the mean time between false alarms (MFA), and D is the worst ezpected
delay in detecting the disorder.

Let N denote the stopping time of Page’s procedure using the log-likelihood. In

[13], Lorden derives two key asymptotic results:

(R1) Select the threshold h in (2.4) such that
EoN(y) 2

where we have indicated ezplicitly that N is a function of v. Then as

7 — o0,
logy
I(64,60)

where I(601,6) is the Kullback-Leibler information number:

el

(R2) Let N' denote the stopping time of any other procedure, where

ElN(’Y) ~

I(61,60) = E [log ?

EoN’('Y) >

Then as v — oo,

= log v
EINI(’Y) 24 1(91 00)

The first result characterizes the asymptotic performance of (2.4)-(2.5) as the (MFA)
becomes large, a condition usually desired in real situations, since one would like the
false alarms to be as infrequent as possible. The second result shows that no other

test is asymptotically better than that in (2.4)-(2.5). In fact, it was later shown in
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[14] and [17] that this procedure is also optimal in the non-asymptotic sense; that is,
D is minimized for any fixed T'.

Thus far, we have focused on the case where g(-) is the log-likelihood ratio, which
results in the optimal version of Page’s test. In some cases, though, the actual den-
sities of the observations are not known, so the exact form of the log-likelihood ratio
is not known and the optimal test cannot be implemented (for example, the exact
values of 6 and 6; might be unknown). Therefore, it is also useful to consider the
more general version of Page’s test where g(-) is arbitrary.

In [5], nonparametric versions of Page’s test are considered for the case where g(-
y P g g

is the sign detector
-1, z<0
gz)=4
1, z2>0
and the dead-zone nonlinearity

-1, z< —d
g(z) =140, |e|<d
1, z>d

where d > 0. It is shown that these nonparametric quickest detectors are useful
in cases where the underlying noise distributions are heavy-tailed. In Chapters 3
and 4 of this thesis, robust alternatives for quickest detection are investigated. Such
techniques are useful when the noise is only partially characterized, and the goal is
then to maximize the worst case performance. In this case, the nonlinearity g(-) is
the solution of a minimax problem, and it turns out to be the log-likelihood of the
least favorable distributions.

It will be necessary to characterize the performance of Page’s test for arbitrary

g(-). How this can be accomplished is the subject of the next two sections.
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2.3 The Asymptotic Performance Measure

In designing a quickest detection procedure, one is interested in minimizing D for any
operating point T, and this minimum occurs when g is the log-likelihood ratio between
fo and f;. Notice also that when this is the case, (R1) says that the worst expected
delay is a logarithmic function of the MFA for large T'. Therefore the performance of
the optimal Page’s test can be asymptotically characterized by the quantity

(2.6)

This quantity is called the asymptotic performance measure of Page’s test, and (R1)
implies that for the optimal Page test, n = I(fi, fo). ©

That 7 describes the asymptotic performance of Page’s test can be seen by ob-
serving that % is the slope of the plot of D versus log T, as T — oo. In particular,

for large T, we have the approximation
log T
7

and so to minimize D, one needs to maximize 7. Note that 7 is not a function of the

D=

(2.7)

threshold A, since the limit was taken as A — oo; this means that we have eliminated
a variable from the optimization problem. However, one must make sure that the
desired T is large enough so that (2.7) is valid. Luckily, in most practical problems,
one is interested in designing procedures with few false alarms, resulting in large T'.

As mentioned previously, Page’s test can also be defined for arbitrary g(z), and
so it would also be useful to characterize the asymptotic performance for this case.
Unfortunately, it is not clear how one would compute 7 for the generalized Page test,
although we know from (R2) that < I(fi, fo). To address this problem, Broder [5]
showed that the lower bound 77 < % can be defined as follows:

7 =wok {g(z) | fr} (2.8)

6Alternatively, the limit in (2.6) as T — oo can be evaluated as either A — oo or as D — oo,
since any one of these implies the other two.
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where wy is the unique non-zero root of the moment generating function equality
B ()| 1} = 1

An asymptotic upper bound on D can now be obtained as

D~ log T < lo§
n n

Therefore, the upper bound on the worst expected delay can be minimized by selecting
7 to be as large as possible.

It is shown in [5] that a sufficient condition for 7 to be maximized (i.e., it equals
n) is that g be the log-likelihood ratio. In this case, we = 1, and 7 directly reduces
to the Kullback-Leibler divergence as expected. It is also shown that % is invariant
to changes in scale; thus, 7 = 7 when g(z) = Clog ;—:% for any C > 0. In Appendix
A, we use variational calculus techniques to show the converse of this — that no other
choice of g(z) will make 7 = 7; thus, g(z) = Clog %;J(g is also a necessary condition.

The lower bound 7 is useful for several reasons. First, it can be computed for any
choice of g(-), enabling side-by-side comparisons of different tests. Second, as will be
shown in later chapters, it is not difficult to compute. Finally, it enables us to obtain
an upper bound on D for any (large) fixed T'; thus, as will be seen in later chapters,
a designer can use 7] to quickly compute the approximate performance of a procedure

which uses any nonlinearity g(-). We will use 7 often in the next four chapters.

2.4 Methods of Performance Computation

We have seen that the performance of Page’s test is characterized by the pair (T',D).
Therefore, a natural way to compare several procedures is to compare the plots of
D versus T for each one. It was shown in the previous section that the relationship
between T' and D can be approximated via the computation of 77 as shown above. We

now discuss how T and D can be obtained directly.
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“Direct” Computation

Let N,(6) denote the average sample number (ASN) of a CUSUM procedure whose

initial score is z (i.e., So = z). When the procedure begins, Sp = 0, and so
T = No(go)

Also notice that since S, > 0, Vn, the worst mean delay corresponds to the case

where S,,—1 = 0; therefore,

D - NO(el)
As stated earlier, Page’s test can be viewed as a repeated application of a SPRT
with lower boundary 0 and upper boundary h:
Sp=5n-1+9(Xs), so=2
M =inf{n|s. € [0,h]}

Also define
M.(6) =E[M | 6]
and
P.(6) =Pr{sy <086}

M (0) is the ASN and P,(6) is the operating characteristic of the SPRT, which is the
probability that the SPRT will terminate at the lower boundary. It is not difficult to
show that [15]:

_ M.(6)
N(6) = 1—P.(6)
and so T and D can be written as
Mo(8
and
D = No(y) = 2ol

1 —Po(6:)
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Define the transformation of random variables ¥ = ¢(X), and let f(y;ﬂ) and
F’(y; 6) denote the density and distribution of Y, respectively, conditioned on 8. The
functions M () and P,(0) satisfy the following Fredholm integral equations

P.0) = F(-50)+ [ Py(OF(w = 0)dy
NAO) = 1+ [ NOF - 5 6)dy

where 0 < 2 < h. Unfortunately, no analytical solutions can be found for these
equations. However, they can be approximated by discretizing the integral. The

solution is determined by solving the system of linear equations

K
P(0) = F(—2;0)+ }: wi P, (0)f (2 — 2;;6) (2.9)
k=1
K -
N (0) = 14> wN,, (0)f(zx — 25;0) (2.10)
k=1
forj=1,...,K, where 0 < 2 < 23 < ... < zg_—1 < 2zx < h, and where w,, ..., wk 1s

a set of weights chosen according to some rule. For example, when {z} and {w;} are
the roots and corresponding coefficients of the Legendre polynomial, (2.9)-(2.10) is
called the Nystrom approximation to the Fredholm equations of the second kind [6].
One could also use a simple rectangular approximation, which reduces the integrals

to Riemann sums [5).

Markov Approximation

The ASN of Page’s test can be expressed in another way. Let ri(n) denote the
probability that stage n will be reached when § = 6;; that is,

r,-(n) = Pr {Sl, veeyOp-1 € [0, h] l 0,}

Now

(= <]

No(0:) = n(ri(n) —=ri(n+1)) = iri(n) (2.11)

n=1
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Notice that r;(n) — ri(n + 1) is the probability that the test terminates in stage n.
The i(7) can be computed using a finite state Markov chain approximation to
Page’s test, an approach introduced in [7]. The interval [0, k] is divided into a total
of p small bins of equal size, and each bin corresponds to a single state: specifically,
state a; corresponds to the subinterval (z;_1,z;], where z; = %‘, j=1,...,p. The
probability transition matrix, Q, is formed, where element @); ; denotes the probability
of the test statistic S, going from state c; at time n — 1 to state ; at time n.
Two additional states are also included. The first is the starting state, ao, which
corresponds to S, = 0. The second is the terminal state, a*, corresponding to the
interval (h, o0]; an alarm sounds whenever the terminal state is reached. It is shown

in [7] that the structure of Q is

R|1-R)1
of| 1

Q=

where 0 and 1 are (p + 1)-dimensional column vectors of all zeros and ones, respec-
tively. Separate transition matrices must be computed for § = 6, and 0 = 6,: let
these be Q;, 7 = 0, 1, respectively, with corresponding submatrices R;.

Let 7, denote the state probability vector at stage n:
Tn = [Pr{Sp € ao},...,Pr{Sn € o}, Pr{S. € a*}]
The successive state probabilities can be computed recursively [11] as
Tn = Tho1Q, n=1,2,...

The probability of reaching stage n is just the probability of not reaching the terminal

state at time n — 1. Thus,

1
ro(n) =Tpo1 |~ | = Q™ , n=1,2,... (2.12)
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where 7o = [1,0,...,0] is the initial state probability vector. Equation (2.12) can be

simplified to
ro(n) = TgR™1, n=1,2,... (2.13)

where 7 = [1,0,...,0] (dimension p + 1). Note that ro(1) = 1; that is, every test
always requires at least one stage. Substituting (2.13) into (2.11), we have

No() = Y miRrL

n=1

m(I-Ro)™1 (2.14)

and so T~ 1) (I-=Ro) 1l and D= 7} (I-Ry)™ 1.

Monte Carlo Simulation

Finally, the ASN of Page’s test can be obtained via Monte Carlo simulation in a
straightforward manner. As mentioned above, T' and D are just the ASN’s of Page’s
test with initial score zero, which can be approximated by the average of the stopping
times of K independent runs. Let Ni denote the stopping time of run k. An unbiased
estimate of the ASN is «

~ 1

N = 7 kz=:1 Ny
where N ~ T when the samples are generated under f (z;00) and N =~ D when the
samples are generated under f(z;6;). The Monte Carlo method will be particularly
useful in Chapter 7, where we investigate an adaptive procedure which is not a version

of Page’s test, and for which the other methods cannot be applied directly.
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2.5 Other Applications of Quickest Detection Pro-
cedures

To conclude this chapter, a brief survey of other areas where quickest detection pro-
cedures are applicable is given.

Closely related to the disorder problerﬁ discussed above is the problem of detecting
transient signals. In this case, two shifts in the mean occur: from 6, to 6;, and then
back to 5. It is shown in [5] that the ML optimal procedure for the transient problem
is again Page’s test.

For the more general problem of correlated observations, a version of Page’s test
can be obtained by replacing the nonlinearity g by

fl(Xn ! X?_l)
fo(Xa | X77H)

9n(Xn) = log
Thus, g is no longer memoryless, but now is a function of the past data. An auto
regressive moving average (ARMA) model is commonly used to model correlated
data. Here, the observations Y,, arise from the model
P g
Y,=> aYi;+» bjVi;
i=1 3=0
where Vi is a sequence of white Gaussian noise. The ARMA model is useful in
spectrum modelling applications [10]. It can also be used to detect changes in
spectral characteristics. Such changes correspond to a shift in the parameter set
{a1,...,ap,bo,...,b}. Examples include shifts in seismic, speech, and biomedical
signals.
Most research in quickest detection has focused on the problem where the disor-
der is a shift from one stationary process to another. However, in some problems of
practical interest, change may be time-varying. An example of this is the detection

of sinusoidal signals for the purpose of carrier synchronization. In this case, the data
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is not accurately modelled as a step change in the mean. In [4], Blostein derives a
procedure that is suitable for detecting time—vdrying changes in the mean. Here, it 1s
assumed that the mean before and after the disorder are known, and that the ampli-
tude of the mean is at least approximately known. The procedure is similar to the
time-varying version of Page’s test, with the benefit that it can be implemented re-
cursively. While this test is not optimal in the sense of Lorden [13], simulations reveal

that the procedure works well for detecting sinusoidal signals of unknown amplitude

in Gaussian noise. 7

Even more difficult is the problém of detecting changes in systems where the statis-
tics are not easily characterized, or where more than just the mean of the distributions
is nonstationary. For example, in [1], the problem of detecting changes in geophysical
systems is examined. These types of signals exhibit a high degree of nonstationarity
(e.g. alternating segments of high and low variance) even when no disorder is present.
Such signals can also arise in biomedical, speech, and image processing applications.

Work has also been done in detecting changes in the parameters of state-space
systems. A typical example is a Kalman filtering application, where one wishes to
track some phenomenon that is subject to sudden changes, such as a maneuvering
target. In [21], a generalized likelihood ratio (GLR) approach is introduced to handle
this problem. The presence of a disorder can be determined by monitoring the filter
residual process: the residual is white Gaussian noise, with zero mean before the
disorder and nonzero mean afterwards. When a disorder is detected, an estimate of
the disorder magnitude is determined and used to adjust the model parameters; in
essence, the model is bootstrapped for the new statistics. 8 The application of the

GLR procedure to geophysical signals is discussed in [1]. A survey of failure detection

"Lorden’s proof of optimality requires that the samples before and after the disorder time be

independent and identically distributed.
81t is assumed that the system is observable so that any change in the state variables will show

up in the residual signal.
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in dynamic systems is given in [20].

2.6 Appendix

23

2.6.A The Log-likelihood Ratio is Necessary and Sufficient

to Maximize 7

Proposition 1: A necessary and sufficient condition that 7 1s mazimized is that

fi(=)
T Clo
g9(z) = Clog 0
for some C > 0.
Proof:
(=)

To prove sufficiency, simply let g(z) = C log A=) We have

fo(=)”
ﬁ = wOC/

- WOCI(fI:fO)

fl(:z:)da:

where wg satisfies

1 = /_‘:exp{woClong ;}fo( )de

I [%J - fo()dz

The latter implies wo = C~. Therefore, (A.1) becomes

ﬁ - I(flafO)

(A1)
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In addition, Lorden has shown [13] that optimal performance over all possible choices

of g(z) is
7 = I(f1, fo)

and that this occurs when g(z) is the log-likelihood ratio. Therefore, 7 is maximized.

(=)

To show the converse, consider the following constrained optimization problem:
mazimize over all g: 7= wO/ g9(z) fi(z)dz

subject to the constraint: /w exp {wog(z)} fo(z)dz =1

where wq is any fixed positive real number. This is a so-called soperimetric problem
from variational calculus [8, 12, 19]. The solution is obtained by first incorporating the
side constraint via the Lagrange multiplier method, and then applying the standard
calculus of variations optimization procedure.

The goal is to determine the g(z) for which the integral

/:: [wog(z) f1(z) + X exp {wog(z)} fo(z)] dz (A.2)

is stationary. Here, X is the Lagrange multiplier associated with the side constraint.

Suppose that §(z) is the function which maximizes 7, and consider the nonlinearity
9(z) = G(z) + € 69(=)

where §g(z) is an arbitrary variation in the neighborhood of g(z). Substituting this
into (A.2), we have

K(e) = [ {wlgle) + ¢ Sa(e)lfu(z) + AeBeedo@ly(2)} do

Now, a necessary condition to get a stationary point is

dK(¢)
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The derivative can be taken inside the integral, and thus we have

dK (e)

de - /°° [wo5g($)f1($) + )\wo‘Sg(m)ewog(z)fo(m)] dz =0

- 00

e=0

Rearranging terms, we have

wo /_ Z 59(2) [file) + Ae*¥® fo()] dz = 0

In order for the equality to hold for arbitrary variations ég, the expression within

brackets must be zero for all z. Therefore, the necessary condition becomes
Fi(z) + Ae%05=) fo(z) = 0

which can be rearranged to get

J1(®) _ tog(-3)+ud(e)
fo(z)
and thus

) A
wog(z) = 1ogf( ) — log(—2) (A.3)

We can now use the equality constraint to determine A. Observe that

1 /_o:o exp {wog(z)} fo(z)dz

_ /_Zexp{logjﬁgi log(~ A)}fo()

-9 () o

1 oo
= -3/ hteyis =3
Therefore, A = —1, and (A.3) becomes

~ _L fl(m)
§la) = 5, o & fol2)

which is just the log-likelihood ratio scaled by the factor ;,1; Finally, wo was chosen

arbitrarily; therefore the optimal nonlinearity is the log-likelihood ratio scaled by any

positive constant.
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That g(z) results in a maximum (rather than some other stationary point) can

be seen by noting that

d*K (e d o
KO L7 onbale) (o) + anba(a)e B9 1)
€=0 e=0
W / " 6¢%(2)e” " fy(z)dz (A.4)
Clearly the integral is strictly positive and we have seen that A = —1. Therefore,
K
@ -y
de? |,

and so the stationary point is in fact a maximum.

Also, it is easy to verify that when g(z) = g(z), 7 = I(f1, fo). Therefore, 7 =17.1
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Chapter 3

Robust Quickest Detection

3.1 Introduction

In the previous chapter, it was shown that optimal procedures for quickest detection
exist when the noise distribution is known and the samples are independent. Unfor-
tunately, in practice the true noise distribution is often not known precisely. This
leads to two questions. First, suppose a procedure is optimal for a particular noise
distribution. How sensitive is the performance of this procedure when the true noise
distribution deviates from the assumed distribution? Second, if it is only known that
the true distribution lies within some noise uncertainty class, what then is the optimal
procedure? Both of these questions are addressed in this chapter.

The disorder problem for a shift in the mean with noise uncertainty is very similar
to that for known noise characteristics stated in Chapter 2. As before, assume that
a sequence of independent random variables X, X3, ... is observed sequentially. Let
H, and H, define the hypotheses “no disorder is present” and “the disorder has
occurred,” respectively. At the disorder time m, a one-time shift in the mean from
—0 to 8 occurs, where § > 0. Let the noise distributions before and after the disorder
be fo and f;, respectively. If these distributions are known, we have seen in Chapter

2 that the optimal procedure is Page’s test implemented using the log-likelihood.

29
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In this chapter, however, it is assumed that, rather than having perfect knowledge
of the noise characteristics, fo and f; are instead known only to lie within some noise
classes Fo and F;. For this case, the disorder problem involves detecting as quickly

as possible after time instant 7 = m that a shift from hypothesis Hy to hypothesis H;

has occurred, where:
HoZ X,’ Nf() 6.7:0, 1= 1,2,...,m—-1

Hi: Xi~fi€F, i=mm+1,...

As before, the goal is to minimize the expected delay in detecting the disorder, D,
subject to a lower bound on the mean time between false alarms (MFA), T. However,
it is necessary to be more specific about what it means to achieve optimal performance
when the noise pair (fo, f1) is known only to lie within some class Fo X F1.

All of the noise uncertainty classes that will be considered here consist of a specific
nominal distribution together with some type of allowable uncertainty; in particular,
attention will be paid to the case of Gaussian nominals, due to their widespread
applicability. One design option is to implement the procedure which is optimal for
the nominal distribution and assume (hope!) that the performance will be similar
in the case where the true noise deviates from this nominal. If the size of the noise
classes is small, this design philosophy may prove satisfactory; on the other hand, if
the noise classes are large, it is not clear what the outcome might be. At the very
least, it would be nice to know what performance results when the true noise is not
the nominal. A more desirable design scheme would be to optimize the performance
over the entire uncertainty class. Unfortunately, a single procedure which is optimal
for each distribution within the class does not usually exist. !

An alternative design methodology is to determine the test which optimizes the

1An exception to this, for example, is the noise class consisting of univariate Gaussian distribu-
tions whose variance may lie on some interval. In this case, Page’s test implemented with g(z) = z
is optimal regardless of the true distribution; this follows from the invariance of 77 with respect to
‘'scale changes in g(z), which was shown in Chapter 2.
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performance for the least favorable noise distributions in Fo and Fj; this is the well-
known minimaz design philosophy. ? A disadvantage of this scheme is that the
performance will be less than optimal when the noise is in fact generated by the
nominal distributions; however, the worst case performance will be maximized. This
is the key reason for considering robust procedures: not only can one get reasonable
performance over the entire noise class, but the performance can also be guaranteed
to be at least some minimal value.

In Section 3.2, the solution to the robust quickest detection problem is given.
The approach involves applying the minimax criterion to the asymptotic performance
measure introduced in Chapter 2. It is shown that there is a direct connection between
robust quickest detection and robust hypothesis testing. As a result, many of the
results from the latter can be applied to the present problem.

The exact forms of the robust quickest detector for two noise uncertainty classes,
the e-contaminated and total variation classes, are given in Section 3.3. Expressions
for a lower bound on the asymptotic performance are computed for: i) the robust
procedure, 11) the test which is optimal for the nominal distributions, and %) two
nonparametric alternatives. The computation is done for several members of each
noise uncertainty class.

In Section 3.4, the lower bounds are evaluated for each of the noise/detector com-
binations over a range of parameters. First, it is shown that the bounds are actually
good approximations to the true asymptotic performance. Next, the asymptotic per-
formance i1s computed for a range of signal to noise ra.tioé. A useful figure of merit,
the robustness index, is also computed: this is a measure of the performance gain
(or loss) in opting for the robust procedure over each of the others. The effect of the

level of uncertainty assumed in the noise model is evaluated. The section concludes

ZTechnically, this should be called “maximin”, since the performance here is measured by a gain
function rather than a loss function. However, as is usually done, the term “minimax” will be used
throughout with the true idea being clear from the context.
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with an example illustrating the utility of the asymptotic performance measure in
practical applications where high MFAs are desired.

In Section 3.5, the robust quickest detector for the weak signal case is determined.
Again, there is a strong connection with robust hypothesis testing, and therefore
some of the previous work can be exploited. The optimal robust ‘detector is deter-
mined for the e-contaminated noise class by applying the minimax criterion directly
to the efficacy, which is proportional to the weak signal asymptotic performance. The
robustness index in this case simply reduces to the asymptotic relative efficiency be-
tween the robust and alternative procedures. Finally, some performance curves are

computed to illustrate the benefits of the robust procedure in weak signal applications.

3.2 Robust Asymptotic Performance

In Chapter 2, the asymptotic performance measure for Page’s test

. logT
n=jm =5

was defined, * along with the lower bound
7 =wE[g(X) | Hi] <7
where wg satisfies the moment generating function equality
E [exp{wog(X)} | Ho] =1

In most situations where quickest detection procedures are applicable, one is inter-
ested in procedures where false alarms occur infrequently, in other words, where T is

large. In this case, we see from (3.1) that T and D can be related by

p~logT g (3.2)

Y n

3Unless noted otherwise, “log” denotes the natural logarithm.
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Since the ultimate goal is to minimize D for fixed T, then, for large T, an approxi-
mately equivalent strategy is to maximize 77. ¢ Similarly, in order to obtain the robust
quickest detector, the minimax criterion can be applied directly to 7.

We wish to maximize the asymptotic performance of Page’s test for the least fa-
vorable noise distributions ( for, fiz) € Fo X F1. Recall that Page’s test involves the
computation of a cumulative sum test statistic, where each sample is processed by a
nonlinearity g, and that an alarm sounds when this statistic exceeds some threshold
h. The asymptotic performance measure describes the limiting behavior of the per-
formance as T' — oo, which is also equivalent to A — oo (or as D — o). Therefore,
in designing a version of Page’s test for practical (i.e., for large T') applications, one
need only consider the choice of g.

Let G denote the set of all memoryless functions g. The direct minimax problem
is

max min : fo, 1) = : for 23
9eG (fo,fl)efoxj-'ln(g fo, f1) = n(gr; for, fir) (3.3)

In order to make it easier to solve this problem, we would like to find a saddlepoint

solution of (3.3); that is, we would like to determine some (gg, (for, fiz.)) that satisfies

max7(g; for, fir) = 1(gr; for, fir) = min _ 7(gr; fo, f1) (3.4)
9€G (fo.f1)eFoxF1
This allows the maximization and minimization to be performed separately, rather

than jointly, thus simplifying things considerably. The following proposition estab-
lishes that a saddlepoint does exist for this problem:

Proposition 2: There ezists a saddlepoint solution, (gr, (for, fiz)), of (3.3).

“#Although 7 is a lower bound on 7, it will be seen later in this chapter that 77 ~ 7 in most cases
of interest.
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Proof:

In [7], Lorden proved that no procedure has better asymptotic performance than

Page’s procedure implemented using the log-likelihood ratio. Therefore, for any pair

(fo, f1), we have
magxn(g; fo, f1) = n(g"; fo, f1)

ge

where g*(z) = log ;—;g% In particular, when (fo, fi) = (for, fiz) and g* = gr =

log %{13—((3, we have the first equality in (3.4). From the second equality, we see that a
saddlepoint solution (gr, (for, fir)) exists when (for, fiz) is the pair which minimizes
n(gr; fo, f) over all (fo, f1) € Fo x Fi; that is, when (for, fir) is the least favorable.

Let this be so, and the proof is complete. |

In [2], Broder showed that when g is the log-likelihood, then # = 7 = I(f1, fo),

where

I(f1, fo) = /°° log (223) fi(z)dz

-00

is the Kullback-Leibler (K-L) divergence. Therefore,

min n(gr; fo, 1) = min I(f1, f
(-fo,fl)efo xF1 ( ° 1) (.fO,.fl)EfO xF1 ( ' 0)
and so the least favorable distribution pair is that which minimizes the K-L divergence.

The goal now is to determine the pair that minimizes I(fi, fo). The following

Lemma is useful for this purpose. It is almost identical to one which appears in [1}.

Lemma 1: Suppose Po and P are classes of probability density functions such that
all members of PoUP, have the same support; if go € Po and g1 € Py are the least

favorable in terms of risk for Py versus P, then

I(q1,90) < I(p1,p0) Vp1 € P1,Ypo € Po
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The proof is similar to Theorem 2.2 in [1], except that it is slightly more direct
and uses the current notation. It will be useful to use the following theorem which

appears in [9] and rephrases part of Theorem 2.2 in [1]:

Theorem 1: Suppose (pd,pl) and (go,q1) are two pairs of probability density func-

tions all of which have the same support. Then, with by = 1 — by, we have

bo go(z)dz + b1/ q:(z)dz

{b1g1>b090} {b1g1<bogo}

> b z)dz + b / z)dz 3.5
° {51P1250P0}p0( ) ' {51P1<bopo}p1( ) ( )

for all by € [0, 1] if and only if

[2# |2 ez [~ 4 (2] o

for all continuous concave functions .

Proof: (Lemma 1)
Let mo = 1 — 71 denote the prior probability that p € Py. To prove the Lemma,
we simply need to let by = 7o, b; = 71, and ¥(u) = —ulogu. We then directly have

that
T z)dz + / z)d
0‘/[‘7"14127"040} 90( ) T A Q1( ) T

mTiq1<7ogo}

> 7r/ mdm+7r/ z)dz
0 {‘"’1?1>‘Kopo}p0( ) ! { pl( )

mp1<mopo}

which is exactly the condition for 9 € Po and g; € P; to be the least favorable
densities in terms of risk for deciding between Py and P;. Using Theorem 1, this
implies

- a(e), (21(_:0)) w@)is > — [~ BE) (pl( )) po(2)dz

oo qo(z) go(z) o0 Po(z) po(z)

which is the same as I(g;, o) < I(py1, po). |
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The above Lemma establishes a direct relationship between the hypothesis testing
problem and the quickest detection problem. In particular, if @ pair of densities 1s
least favorable in terms of Bayes risk, then they will also be the least favorable for the
quickest detection problem. The least favorable pair in terms of risk has been derived
for several uncertainty classes [5]; therefore, previous results on robust hypothesis

testing can be applied directly to the quickest detection problem.

3.3 Robust Quickest Detectors for Two Noise Un-

certainty Models

In this section, the robust quickest detector is determined for two noise uncertainty
classes: the e-contamination class, which is a useful noise model when outliers are
present in the data, and the total variation class, which assumes the noise distribution
is of some nominal shape plus or minus some deviation whose sum total does not
exceed some constant. The choice of noise model is dependent on the particular
application.

For each noise model, we are interested in comparing the performance of the
procedures arising from three different design philosophies. The first is the procedure
which is optimal for the nominal distributions; if this test works well over the entire
class, then a robust approach may not be necessary. Thus, how the test performs
when the noise is not generated by the nominal distribution is of primary interest.
The second is the minimax robust procedure. The minimax criteria maximizes the
performance for the least favorable distributions; however, what sacrifice is made
if the noise arises from the nominal distribution? This question is also answered.
Finally, the performances for the nonparametric procedures with g chosen to be the
sign detector and dead-zone limiter are computed; this enables us to determine when

a nonparametric test gives satisfactory performance, such that the use of a robust
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procedure is not necessary.

3.3.1 e-contaminated Noise Class

The noise classes for the e-contaminated case are as follows:

Fo = {f(z) = (1 —¢0)fno(z) + e0h(z) Vz € R,hecH}
Fi = {f(z) =1 —¢&1)fu(z) +e1h(z) Vz € R, ke H}

where H is the class of all legitimate density functions on R, and &y and &; are
constants that lie in the interval (0,1). fn. and f,; are nominal densities in each
class. A popular member of the e-contaminated class is the Gauss-Gauss mixture

density:
2

—z? -z
fgg(“’)=(1—€)\/— OeXP{ }+€ 21_01 eXP{-z—U—f}

Here, most of the noise samples are Gaussian with variance o2. However, the noise

is sometimes (with probability ) contaminated by samples which are Gaussian with
variance 07 > of. This density is useful for modelling noise that is occasionally
contaminated by outliers: o7 and ¢ are directly proportional to the magnitude and

frequency of the outliers, respectively.
Huber [5] has shown that the least favorable densities in terms of risk for the

e-contaminated class are:

B In(z)

fo(e) = | AeMf=(@), B <o
o' (1 — €0) fr(z), 'fn:(:) @

fra(z) = (I-e)fm(z), £ >
c1(l — €1) fro(), _f";(:) ‘1

where ¢o and ¢; satisfy 0 < ¢; <1< ¢y < 0o and are selected so that fro and fz, are

legitimate density functions; in other words, ¢, and ¢; satisfy

Pr {}‘:Ez; < o lfno}+ ¢! Pr {}%%Zcﬂf,u} = 1_1_80 (3.6)
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Pr{ﬁig>Cl’f"1}+clPr{%ggcl'f"°} - — @7

It is shown in [5] that co and ¢; are unique. Furthermore, the left hand sides of (3.6)
and (3.7) are both monotonic functions of ¢o and ¢, respectively, so they can be solved

using a bisection algorithm. It can be seen directly that the robust nonlinearity for

this case is

logc1+log( _co), —(—% <a
gr(z)=1o gleg ; logf%l)-}-log (1 co), c < _(_)(
Z

log ¢o + log (1 c0) , —J—)

nl!zl

which is seen to be a “censored” version of log Foola)"

Optimal Performance for the Least Favorable Distributions
As shown in the previous section:

n(gr; for, fir) = I(fr1, fro)

Thus, the asymptotic performance is obtained by simply evaluating the K-L diver-

gence for the least favorable distributions. The result is

n(9r; for, i) = /{fn (). } [log a1 + log <1 80)} ci(l — &1) fro(z)dz

* /{CK?IE:)“O [ (;::)Ea:g) +log (1_:?0)] (1 —&1)fm(z)dz
+ /{ mE >c0} [log co + log (1 50)] (1- 51)fn1($)d$

= (1—e&1)log (%{%) [  Pr {-’fi:‘i% <q fno} +Pr{;:;g; > ¢ f,ﬂ}]
+ (1—&) [cllogclPr{%—gm—; <o |fno}+logc0Pr{j:::)§ ; > 1fn1H

0 g (5 20
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- oa(12E) ey () e

fo==

+ (1-2) lcl log ¢; Pr { ;::E-’E; <e | fno} +log co Pr {;:8 > o | fur }] (3.8)

where the last inequality results by substituting in (3.7). The e-contamination model

shown above makes the provision that the contamination of the nominal distributions
may differ under the null and alternative hypotheses, and so o # &;. While there
are some applications where this is the case, the present work focuses on the case the

disorder is solely due to a shift in the mean. Hence, we let g9 = ¢ = €.

g-contaminated Model with Nominal Gaussian Noise: Optimal Perfor-

mance for the Least Favorable Distributions

Here, we consider the specific case where the noise pair lies in the e-contaminated

class with nominal Gaussian distributions, and g0 = &; = €. Let

1 e_a'.Z /202
2ro

p(z;0) =

and define ¢o(z) = ¢(z + 0;0) and ¢1(z) = ¢(x — 6;0). The nominal densities are
now fuo(z) = ¢o(z) and fri(z) = ¢1(<).

In Figure 3.1, examples of the least favorable pair are shown for ¢ = 0.1 and
e = 0.25 along with the nominal pair, where § = o2 = 1. Notice that the least
favorable contamination of f,o involves increasing the density in the neighborhood of
fa1, and vice versa, making it more difficult to distinguish between the two hypotheses.

The optimal performance for the least favorable distribution pair (fro, fa1) is given
in (3.8). Compute the four terms individually. The first one is clearly zero. Comput-

ing the second term requires us to evaluate the integral

) 29 %‘E—logco—a y+ ] ___y2 )
d - o2 _v_ d .
/{cl< otz CD} <¢( ) hz)de = 0% JBloge1 -6 /210, P20 [P (3.9)

0
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0.45
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o f nO_—_-’..-'.- ‘—"__— fn1

0.35} ;- \\',:' :.;/, \\
fLo, £ = 01—_’/, \‘-,' 7 \*_._— fL1, e=0.1
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0.051

Figure 3.1: Nominal Gaussian and least favorable e-contaminated densities. § = o2 = 1.

where the change of variables y = z — 8 was made. The right side can be broken up

into two parts:

26 y Al +292 bo—6 ] -\,
- ex —_— -5 ex —_—
08 Jb-6 /270y P 202 y ol Jb-6 2mwo, P 202 Y

where boé%:% log ¢ and by é‘—;ﬁzl log ¢;. The left term can be integrated directly and the

right term can be written in terms of the standard normal cumulative distribution

function ®. Therefore, (3.9) equals

N e )

Evaluating the third term requires the following computation:

Pr {zzgmi <ol ¢0} Pr{:z: < %logcl | ¢0} (bld“: 9) (3.10)

Similarly, to evaluate the fourth term, we need:

b(z) _ o o (b=0) (bt
(2210} e ) 10 (550 o (20

(3.11)
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By using (3.9)-(3.11), we finally have that (3.8) is _
0 —(by — 6)? —(by — 6)2
77(9R§f0L7f1L) = (1—6){\/%-0—0 I:exp{_(_z_a_g_)}_exp{ (2003 ) }]}
; (1—5){i [q> (b°‘9> iy (”1“’)]}
99 0o o
+ (1—¢) {C1 logc; @ (blj 9) +logco @ (_bg:_ 9)}

where ¢; and c¢; are chosen to satisfy

3 (b"”) + '@ (_b°+ 9) R (3.12)
d (‘bl + 0) +c® (b1: 9) ! (3.13)

Three interesting points can be made about the above equations. First, notice

that 7(gr; for, fir) can be alternatively written in terms of the nominal signal to

6.
oo’

e e Ty |

+ -afoe s (free—d) - (e -]
1

1
+ (1—¢) {cllogcl ® (glogcl—{-d) +logco @ (—-églogco—i-d)}

) . LA
noise ratio d=

This demonstrates that the performance is proportional to the relative values of the
nominal signal § and nominal noise power o2, rather than the absolute values. This
is not surprising because: i) we are using Gaussian nominals, and %) for hypothesis
testing in Gaussian noise, the probability of error is a function of the signal to noise
ratio [11].

Another observation is that c; = ¢;! (and, hence, b = —b;). To see this, first
assume that c, satisfies (3.12), and then substitute ¢o < ci''; the result is equation
(3.13). Similar logic shows that (3.12) can be obtained from (3.13). Since both

equations must hold, ¢y = ¢;* (note that this is only the case when g0 = &,).
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The last point involves the range of values that € can take on. An upper bound
can be obtained by considering the case when ¢o = ¢;, corresponding to the minimum
value of ¢ for which the model is still valid (recall that ¢; < ¢p). Since ¢ > 0, this

occurs at ¢o = ¢ = 1. ® Substituting these values into (3.12) and (3.13), we have

=3 (@)

Also notice that (3.13) can be written as

() renf (29
0o lors oo 1—¢

and that the left side of this equation is monotonically increasing in b; = —by <

€ = ¢*, where

0. Therefore, the largest allowable value of b;, namely zero, results in the largest
allowable value of €, namely £*. We have thus defined the breakdown point, e*, for the
e-contaminated noise class: the condition ¢ € [0, e*) must be met for the problem to be
valid. In other words, ¢ is small enough to insure that Fy and F; are distinguishable.

The breakdown point is plotted versus £ in Figure 3.2.

(44}

Performance Involving the e-contaminated Model with Nominal Gaussian

Noise when the Assumed and True Noise Densities Differ

Perhaps the most interesting performance computations involve cases where the noise
assumptions used to design the detector do not match the true distributions. Exam-
ining such cases enables us to evaluate the performance degradation that results when
it is not possible to implement the optimal procedure, for example, when the noise
is not completely characterized. It was shown in [2] that when the assumed and true
distributions, say fo and fi, agree, then n = 7 = I(f1, fo). However, in general, not
only is the computation of 5 is more complicated, but also the lower bound, 7, on 7

1s not tight. We will see, though, that 7 is still a good approximation for 7.

SNote, however, that this results in the degenerate case of gr(z) = 0.
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Figure 3.2: Breakdown point for the e-contaminated noise model.

The procedure for computing 17, detailed in Chapter 2, is reiterated here. Let g(z)
be an arbitrary nonlinearity, and let ( fo, f1) denote the true noise density pair. Then
7 is given by

7 = woE {g(z) | fr} (3.14)

where wp is the unique nonzero root of the moment generating function equality
E{e®s®) | fo} =1 (3.15)

When g(z) is the log-likelihood ratio between fo and fi, wo = 1 and (3.14) reduces
to the K-L divergence. If this is not the case, (3.15) must be solved for wp, and then
(3.14) can be computed.

Table 1 summarizes each of the scenarios for which 7 is computed. For the linear
and robust detectors, the particular expressions corresponding to equations (3.14)
and (3.15) can be found in Appendix A. The computation of 77 for nonparametric

procedures is discussed next.
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Table 1: Computations involving the e-contaminated model

noise type procedure used

Gaussian linear
Gauss-Gauss | sign
least-favorable | dead-zone

robust

Nonparametric Alternatives

The robust quickest detector is a parametric procedure. That is, specific assumptions
are made about the noise classes: they are “centered” about some known nominal dis-
tribution, and the contamination factor ¢ is known. On the other hand, nonparametric
detectors involve procedures that make no assumptions on the noise characteristics,
but assume only that a shift in the mean from some negative value to some positive
value occurs. It is useful to compare the performance of the quickest detectors arising
from these two paradigms. Nonparametric quickest detection has been considered
extensively in [2]; the main results of that work are repeated here.
Suppose the nonlinearity is given by
-1, z< —d
g(z)=40, —-d<z<d

1, z>d

This is called a random walk nonlinearity. In [2] it is shown that when g is used in

Page’s test, the lower bound 7 is tight, and is given by
- do0
7= [p1 — q]log —

Do
where

pi = Pr{g(z)=1|f}, i=0,1
¢ = Pr{g(z)=-1]f}, i=0,1
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When d = 0, g(z) is the sign detector; otherwise, it is called a dead-zone limiter.
For the latter case, a value of d = 0.612 - 0y is used, since this choice maximizes
the efficacy given that the noise is Gaussian [6]; this is reésonable since the noise is
nominally Gaussian with variance 3. ® Once f, and f; are known, the values p; and
g; are easily computed, and hence, so is the performance.

We would like to determine what level of robustness can be gained by using non-
parametric techniques. It was shown in [2] that the sign detector and dead-zone
limiter often outperform the linear detector when the tails of the noise distribution
are heavier than Gaussian. Intuitively, one expects that the robust procedures would
outperform their nonparametric counterparts, since more assumptions are incorpo-

rated into the model: as we shall see, this is true in most cases.

3.3.2 Total Variation Noise Class

As in Section 3.3.1, denote the nominal density function pair by (fno, fa1) and the

least favorable pair by (fro, fz1). The noise classes for the total variation model are:

Fo = {f: [ 1f(e) - fufo)ldz < 6}
Fro= {f: [ 1f() - fule)ldz < 8}

That is, the sum total of the variation of f; € F; from the nominal f,; does not exceed
6. This class is useful in cases where the overall shape of the noise density is exactly
or approximately known, but where there is still some uncertainty proportional to &.
This uncertainty might arise due to modelling error, or possibly due to assuming that

the noise is stationary when in fact it is nonstationary.

®In [2], the dead-zone limiter is implemented with d = 0.612 - o, where 02 is the variance of the
fi rather than f;. It makes no sense to do this here, however, since we do not know what the noise
density is in reality, only that the nominal density is A/(0, ad).
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The least favorable densities in this case are [5]:

(

L (fuole) + frale)), 22 < oo
fro(z) = { fro(z), o= ;—:i% s
i (role) + fra(e)), £ 2
15 (fao(2) + fra(2)), 28 < oo
fu(z) = { fu(=), o= %;_@ s
2 (foo(e) + nla)), 353 2 o

\
4

\

and the robust nonlinearity is

logeo, 8 <q

fra(z) o)

_ _ fus(e) fu()

gR(m) log fLo(:L') log fro(z)? Co < Fno(=) <a
10g C1, ;ﬁ%‘:‘% 2 (5]

where 0 < ¢ < 1 < ¢; < oo, which again is seen to be a “censored” version of

.f-n.l x 7
log ——(—)jno @)

The least favorable distributions satisfy

[ Vfala) — Fro(s)lda = &

[ i) - fa(@lds = &

It is shown in [5] that a sufficient condition for this is that
S @)= FaleDda = [, \(frole) = Fulada=3  (316)
{free) {520} 2

The values of ¢, and ¢; are determined by solving (3.16). As with the e-contamination

noise model, ¢y and ¢; are unique. In particular, if we let ko = 732, then the first

term in (3.16) can be written as

‘/{fn1§(fno+fn1)ko} [(fno(m) + fnl(m))ko - fﬂl(m)] dz

"Note that here ¢y < ¢, whereas in Section 3.1, ¢; < ¢o.
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which is an increasing function of kg; thus, a bisection algorithm can be used to solve

for ko, and hence, for ¢y as well. Similarly, ¢; is determined by letting k; = I +C1 and
solving
nolZ + nil\Z ky — nol T dm
‘/{anS(an’*‘f'nl)kl} [(f O( ) f 1( )) ! f 0( )]
which is an increasing function of k;. The above conditions can be written in the

more useful form:

ko Pr{;711 < | an} + (ko — 1) Pr {fnl <o fnl} = g (3.17)
(kl - 1)PI‘{;:1 > I an} + kl PI{;:O > q l fnl} = g (318)

Optimal Performance for the Least Favorable Distributions

As shown in Section 2, the optimal robust asymptotic performance is given by the

K-L divergence, which for the least favorable total variation density pair is

7(9m; fou, fiz) = /{_L 1008 T ole) + frs(o))e

" Jeceay® (H ) it
+ /{;Ll> }(logm) (fn0($)+fn1(:c))dz

= log co [Pr — < co | fno} + Pr{}[nl <e¢o | fnl”

1 no

+ T logcl[ { lfno} + Pr {;:: > |fan

+ ( ) fra(z)dz
Co<f nl <c
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Total Variation Model with Nominal Gaussian Noise: Optimal Perfor-

mance for the Least Favorable Distributions

Here, we consider the specific case where the noise pair lies in the total variation class
with nominal Gaussian distributions fno(z) = ¢o(z) and fni(z) = ¢1(z). In Figure
3.3, the least favorable densities in the total variation class are shown for § = 0.2 and
§ = 0.5 along with the nominal Gaussian densities, where 6 = o7 = 1. As with the
least favorable e-contaminated densities, fzo and f1; for the total variation model are

seen to look like one nominal corrupted by the other, thus increasing the difficulty in
distinguishing F, from Fj.
0.45¢
0.4f
0.35¢
0.3F
0.25¢

0.2

0.1

0.05f

Figure 3.3: Nominal Gaussian and least favorable total variation densities. § = o2 = 1.

. . A o? Ao?
Again, for convenience, define boz%% log ¢p and blzgg logc;. Then

n(gr; for, iL) = 13 log co [@ <bo+9) 4 (60—9)]

Co 0o

—b — 8 —
Frgeale () +o (55
14 ¢ Oo Oo
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i o) ()
FER)-(2)

The last two terms arise when the integral over {¢; < % < ¢} is evaluated; however,

note that this is the same computation as in (3.9), except that the roles of ¢; and ¢
are now reversed. The values of ¢, and ¢, are determined by solving (3.17) and (3.18)

for this particular choice of densities. They are:

ko® (bo+0>+(ko-1)@ (b0_0> = §
Op Og 2

[ =by — —b
(k1—1)<1>< b 0>+k1<1>< 1“’) _$
Oo Oo 2

(Recall that b; and k; are functions of ¢;, for ¢ = 0, 1)

As with the &-contaminated model, 7(gr; for, fir) for the total variation model

[

. . . . . A
can be expressed in terms of the nominal signal to noise ratio d=_. We have

Co 1 1

n(gr; for, fir) = g 10800[‘1’(2d10gco+d)-I-‘I’(zdloch—d)]

Co
1 _ 1 1

1+6110gc1 [@( 2dlogc1—d)+<1>(—§210gc1+d)]
2 171 2 171 2
+ ”;d [exp{—§ <ﬁlogco—-d) }—exp{——§ (ﬁlogcl——d) H
1 1
2 —— — s — —
+ 2d [@(Zdlogcl d) @(2d10gc0 d)]

Also, since the nominal densities are symmetric, we again have that ¢, = ¢;*.

+

The breakdown point can be computed in a manner similar to before. We notice

that again this occurs at ¢g = ¢; = 1, and so the critical points for § are

reof2)-o(2) - (2)-

Hence, for a given ;%, the model is valid for § € [0,6*). The breakdown point is

plotted versus Uio in Figure 3.4.
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Figure 3.4: Breakdown point for the total variation noise model.

Performance Involving the Total Variation Model with Nominal Gaussian

Noise When Assumed and True Noise Densities Differ

Here, 77 is computed for several cases where the noise assumptions used to design
the detector do not match the true distributions. A summary of all computations
involving the total variation model is shown in Table 2. The discussion in Section
3.3.1 regarding the computation of 7 also pertains here. The details of the derivations

can be found in Appendix B.

Table 2: Computations involving the total variation model

noise type procedures used

Gaussian linear
least-favorable | sign
dead-zone

robust
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Nonparametric Alternatives

The discussion of Section 3.3.1 also applies here. The versions of Page’s test involving
the sign detector and dead-zone limiter are again evaluated against the robust quickest

detector.

3.4 Performance Comparison

In this section, the performances for all of the noise/quickest detector combinations
are computed for some particular cases involving the -contamination and total vari-
ation models. Throughout, we assume for both noise classes that the nominal distri-
bution is Gaussian with variance 02 = 1, and that the mean is —6 before the disorder
and 6 afterwards.

For each of the two noise classes, the performance will be computed for the cases
where the true noise pair (fo, f1) is: ¢) the nominal, and 4) the least favorable pair. In
addition, the performance is also computed for another member of the e-contaminated
class, the Gauss-Gauss mixture, where the contaminating distribution is Gaussian
with variance o2 = 100. The parameter 'yéggl is often used to represent the magnitude
of the outliers relative to that of the nominal noise samples; here 4 = 100.

It will be useful to define the effective signal to noise ratio (SNR), ¥, as follows:

[E{X | fi}]

v/ Var{X | f:}

This is seen to be a weighting of the signal strength (the mean) by the uncertainty (the

U= ,fiEf,',-i=0,1

variance); both of these quantities vary for different members of F;. Because we are

considering the case where the nominal densities are symmetric, that is, fno(—z) =

fr1(z), we see that E{X | f1} = —E{X | fo}. Thus, the effective SNR can now be
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related to the deflection SNR [3]:

s [ECX | A} —BLX |
ef Var{X | fo}

SNR

which is a measure of the relative detectability between the pre- and post-disorder

hypotheses, fo and fi; ® we have:

U= (SNRdef)%

DN =

Note also that the effective SNR can be alternatively expressed in decibels:
Vg = 10logy, v?

It is not difficult to verify that for Gaussian noise

and for Gauss-Gauss noise

U =
V(1 =)o + eo?

However, the computation of ¥ for the least favorable distributions is more involved,
and therefore can be found in Appendix C.

In the previous section, 77 was computed for several noise and detector combi-
nations. We validate the accuracy of those expressions by comparing the computed
values of 77 with estimates of 5 obtained by measuring the inverse of the asymptotic

slope of the plot of D versus log T (recall that this is exactly the definition of 7). In

8 A more general definition of the deflection SNR is

a [E{T(X) | f1i} - B{T(X) | fo}}*
SNRgef = VeI [ fof

which is useful in evaluating the power of a detection procedure where the samples are processed by
the nonlinearity T'(-). Thus, T(z) = = in the present case. A comparison of other definitions of the
SNR is the subject of [3].
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Appendix D, performance curves are shown for each of the noise distribution pairs for
¥ 4p = 0and — 10 dB, followed by a series of tables summarizing the measured and
computed values of the asymptotic performance. In all cases, 7 and 77 agree within
2%. Therefore, based on the computations performed, the approximation n =~ 7
appears to be well-founded.

In order to evaluate the performance gain or loss in opting to use a robust proce-
dure rather than one that is nonparametric or based on the nominals, we define the
robustness indez as

XAB=="
nB

where 74 and 7jp are the values of 7 for procedures labelled A and B, respectively.
The robustness index also allows us to relate the relative expected delays for each
procedure. We have seen that 77 closely approximates 5. As a result, for large T,

equation (3.2) in Section 2 becomes

log

Y

D=

(3.19)

Let D4 and Dp denote the expected delays for procedures A and B, for some T which

is the same for both procedures. Using (3.19), we have

Dg (log T) <logT) Na
[~} — - — = - = XA,B
Dy 7B N4 nB

Thus, a decrease in the expected delay corresponds to an increase in the performance.

3.4.1 7 Versus VU for Different Detector/Noise Combina-

tions

Figures 3.5 through 3.18 illustrate the asymptotic performance for each of the proce-
dures as a function of ¥, as well as the improvement index of the robust procedure

over each of the others. Figures 3.5 and 3.6 show the performance when the noise
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Figure 3.6: Robustness index for the robust procedure with £ = 0.1 in Gaussian noise.
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is the nominal Gaussian. ° The linear detector is optimal for this case, and this is
reflected in the plots. Also notice that, when the robust detector is used, the assumed
level of contamination ¢ is inversely proportional to the performance. The plot of x
versus U reveals that the expected delay for the linear detector is only about 75%
of that for the robust procedure. This is the price one pays for robustness: when
the noise is close to nominal, the robust procedure will react less quickly than the
procedure which is optimal for (fno, fn1).- On the other hand, the robust procedure
outperforms the sign detector for any choice of £ and the dead-zone limiter for smaller
€; however, notice that if ¢ = 0.2 is assumed, then the dead-zone limiter is the better
choice. We see that as € gets larger, the robust procedure incorporates less infor-
mation about the nominals (i.e., the nominal log-likelihood ratio is clipped at lower
levels), resulting in a decrease in 7.

On the flip side of the above discussion, the conservativism of the robust procedure
can be more than offset when the noise is not nominal, as shown in Figures 3.7
through 3.10. Here, Gauss-Gauss noise is considered for ¢ = 0.01 and ¢ = 0.1.
The most striking observation is that the linear detector performs much more poorly
than any of the other procedures considered: the robust procedure outperforms the
linear test by more than a factor of eight in some cases, and would therefore be
preferred in a noise environment in which outliers are present. The performances of
the nonparametric tests are more reasonable. Also, the relative benefit of the robust
over the nonparametric tests in general is smaller for ¢ = 0.1; in fact, the procedure
which utilizes the dead-zone limiter outperforms the robust test for ¥ close to unity.

The performance for least favorable e-contaminated noise is shown in Figures
3.11 through 3.14. The quickest detector for the least favorable noise is exactly the

robust procedure (by design), and the graphs corroborate this. For the case of small

®Here x denotes the gain in performance that is realized when the robust procedure is used
compared to the procedure listed on the graph.
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Figure 3.7: 7 for Gauss-Gauss noise: ¢ = 0.01, y = 100.
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Figure 3.8: Robustness index (¢ = 0.01), Gauss-Gauss noise.
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Figure 3.10: Robustness index (¢ = 0.1), Gauss-Gauss noise.
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Figure 3.12: Robustness index (¢ = 0.01), least favorable e-contaminated noise.
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Figure 3.14: Robustness index (& = 0.1), least favorable e-contaminated noise.
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contamination (¢ = 0.01), the linear detector outperforms the nonparametric tests
over a fairly large range of ¥, while requiring less than 10% additional expected delay
in most cases (although as ¥ becomes very small, the performance of the linear test
deteriorates quickly). On the other hand, observe that one would likely prefer one of
the nonparametric tests over the linear test when the contamination is heavier.
Similar conclusions can be drawn when the least favorable total variation noise is
present; these results are shown in Figures 3.15 through 3.18. Note that the overall
shape of these performance curves bears a striking similarity to those of Figures 3.11
through 3.14. This fact is not surprising when we compare Figure 3.1 and 3.3: the
shape of the least favorable densities under the two noise uncertainty models are quite
similar, and so one expects that the performance of a given test would be comparable

for each.

3.4.2 Illustration of the Saddlepoint Property

Recall that part of the saddlepoint property in (3.4) stated that
n(gr; for, fir) = min 1(gr; fo, f1)
(fofr)eFoxFy
That is, when the robust procedure is used, the minimal performance results when
the least favorable distributions are used. This fact is illustrated in Figures 3.19 and
3.20. In each case, we observe that for a fixed uncertainty class (i.e, fixed 6, o, and
either € or 8), the least favorable pair produces the lowest performance. Also notice
that as the contamination factors £ and §é increase, the difference between the robust

performance for the nominal and least favorable noises increases.
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Figure 3.15: 7 for the least favorable total variation noise: § = 0.05.
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Figure 3.16: Robustness index (6 = 0.05), least favorable total variation noise.
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Figure 3.19: 7 when the robust procedure for the e-contaminated class is used. The type

of noise is indicated on the graph. ¢ = 0.01 (solid) and 0.1 (dashed).
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Figure 3.20: 77 when the robust procedure for the total variation class is used. The type of
noise is indicated on the graph. § = 0.05 (solid) and 0.2 (dashed).
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3.4.3 7 Versus Contamination Level for Different Detec-
tor/Noise Combinations

In Figures 3.21 through 3.26, 7 is plotted as a function of the contamination ¢ and 6
for the Gauss-Gauss and least favorable noise types.

It is immediately obvious from Figures 3.21 and 3.22 that the linear detector is
a poor choice when Gauss-Gauss noise is present even for very small contamination
levels, and regardless of the value of ¥. Also apparent is that the advantage of
the robust detector over the nonparametric procedures is greater when the SNR is
lower. However, the dead-zone limiter outperforms the robust test for £ > 0.075 when
¥ ;g = 0 dB. Finally, in Figure 3.21, notice that for heavy contamination, there is
little advantage in opting for the robust procedure over either of the nonparametric
tests. Each of these tests shares the property, not possessed by the linear detector,
that the observations are processed by “clipping” the larger samples; this property is
therefore important when the occurrence of outliers is frequent.

Figures 3.23 and 3.24 show the results for the least favorable noise for the e-
contaminated class. First notice that 7 for the robust and linear detectors are the
same for ¢ — 0. This is as expected, since for £ = 0, the robust test s the linear test
(i.e., no robustness is needed, since there is no uncertainty). However, the performance
of the linear test falls off quickly, and is the least desirable of all the tests for heavy
contamination. Meanwhile, the robust procedure outperforms all of the others for
any level of contamination, a fact that results from the saddlepoint property. Again
observe that for ¥ ;5 = 0 dB and under heavy contamination (¢ > 0.1), there is little
advantage of the robust procedure over the nonparametric alternatives.

The results for the least favorable total variation noise are shown in Figures 3.25
and 3.26. As discussed earlier, because the least favorable densities for each of the

two class are similar, the resulting performances are also so. Therefore, the same
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conclusions can be drawn here as were in the previous discussion.

3.4.4 Example

We conclude this section with an example designed to illustrate the utility of 7.
Suppose that one wishes to detect a shift from —6 to § in an environment where
the noise is not completely characterized; instead, it is known only to be nominally
Gaussian, and is otherwise assumed to lie in the e-contamination class with ¢ = 0.1
(relatively heavy contamination). It is of interest to design a system which guarantees
a maximum rate of false alarms, regardless of what the actual noise distributions turn
out to be.

Assume that the observables are of some process which is sampled at 10 kHz, and
that § = 02 = 1. Suppose that it is required to have no more than: i) one false alarm
per hour, and 4i) one false alarm per 100 hours (just over 4 days). This results in
Ty = 3.6 x 107 samples and T, = 3.6 x 10° samples. The upper bound on the expected
detection delay

log T;

D; <22 =12
7

can now be determined simply by computing 7 for the detector and noise distributions

of interest (As we observed previously, since 77 = 7, the upper bound is actually a
good approximation of D).

Table 3 compares the expected delays in milliseconds when using each of the
four detectors in Gaussian, Gauss-Gauss, and the least favorable noise with £ = 0.1.
Notice that the robust detector outperforms both nonparametric tests in each case,
and also that it may not be wise to use the linear detector if there is a large amount
of uncertainty in the noise. Furthermore, observe that the additional delay one must
incur for raising T by a large amount (from 1 hour to 100 hours) is relatively small

since, in the asymptotic realm, the expected delay is proportional to the logarithm
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Figure 3.21: 7 versus ¢ for Gauss-Gauss noise: ¥ = 0 dB, v = 100.
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Figure 3.22: 7 versus € for Gauss-Gauss noise: ¥ = —10 dB, v = 100.
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Figure 3.23: 7 versus ¢ for least favorable e-contaminated noise: ¥ = 0 dB.

=3t

1 L 1 1
0 0.02 0.04 0.06 0.08 0.1 0.12
>4

Figure 3.24: 7 versus ¢ for least favorable e-contaminated noise: ¥ = —10 dB.
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of T.

Finally, notice the apparent paradox that for the linear test, the expected delay
for Gauss-Gauss noise is far greater than that of the “least favorable.” Recall that
the least favorable densities were those that minimized the asymptotic performance
measure when the optimal processor, the log-likelihood ratio, was used (see the sad-
dlepoint condition in equation (3.4)). Therefore, the fact that the least favorable

noise produces the largest delays is only guaranteed for the robust procedure.

Table 3: Estimate of expected detection delay (ms)

Gaussian | Gauss-Gauss || Least fav.
test T | T, Ty T, T | T,
linear 0.87 ] 1.10 || 13.47 | 17.0 || 3.28 | 4.15
sign 1.53 1 1.93 || 1.92 | 2.43 || 2.97 | 3.76
dead-zone | 1.17 | 1.47 || 1.64 | 2.08 | 2.89 | 3.66
robust 1.14 | 1.45 | 1.56 | 1.97 || 2.62 | 3.31

3.5 Locally Robust Quickest Detection for the &-
contamination Class

In the preceding sections, the disorder was taken to be a shift from —6 to 6, where
6 was arbitrary. Of particular importance is the case where the disturbance is very
small; in other words, 6 is close to zero. We are therefore motivated to consider robust

quickest detection procedures for the so-called local or weak signal case.
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3.5.1 Local Behavior of the Asymptotic Performance Mea-
sure

At the disorder time, suppose the random variables undergo a shift in distribution
from f(z + 6) to f(z — 8). We have seen that the optimal procedure is Page’s test
using g(z) = log %(:—}_%, and that the asymptotic performance is given by the K-L

divergence:

7= [: log (;Ez ; z;) f(z —0)dz

It is easy to see that lims_,o 77 = 0. However, this tells us little about the behavior of
the performance for weak signals, other than that it becomes increasingly poor as the
magnitude of the disturbance approaches zero. Since the best asymptotic performance
is achieved when g is the log-likelihood ratio, we conclude that the performance will
also be poor for arbitrary g. |

We want to study the behavior of 7 for § near zero. A natural approach is to

express 7 as a Taylor series about 6 = 0 as follows:

92 427
T3 i
0=0

- dn
77:7Il9=0+0l

20 + ...

6=0

Let G be the collection of all nonlinearities g satisfying E{g(X — 6) | f} < 0 <
E{g(X + 6) | f} for all § in some neighborhood of zero, with E{g(X £ 6) | f}
continuous at § = 0; then E{g(X) | f} = 0 for g € G. It is shown in [2] that

im 25 =0
and
where
£=E(f,q) = (f ¢'(z)f(z)dz)’

[ g¥(z)f(z)dz
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is the well-known efficacy. The local behavior of 77 when a particular nonlinearity g is
used can be approximated by the first nonzero term of the Taylor expansion, which

is the second order term, yielding:
7~ 20%°€ (3.20)

Therefore, the difference in local asymptotic performance for two different g’s can be

evaluated by computing the efficacy for each.

3.5.2 Computation of the Locally Robust Quickest Detec-

tor

Since the efficacy describes the small signal behavior of Page’s test, the minimax
criterion can be applied directly to the efficacy in order to obtain the weak signal

robust quickest detector. Thus, we need to solve:

in &(f, 3.21
ma min (f,9) (3.21)

Again, it is useful to determine a saddlepoint solution.
Proposition 3: There ezists a saddlepoint, (gr, fr), of (3.21).

Proof:
It is well-known that for any fixed density f(z), the efficacy is maximized by using

()= (L)) = aanfa), varo

where gi,(z) denotes the locally optimal nonlinearity. A proof using variational cal-
culus is given in [8]. Using this g(z), it is not difficult to show (with the additional
condition that f(—oo) = f(o0) = 0) that

mgeth = | () =10
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which is just Fisher’s information. 1°

Thus, the saddlepoint solution is (gg, f1), where gr(x) = :f—i%a;—) and f, is the
density that minimizes Fisher’s information. The existence and uniqueness of such a

density are demonstrated in [4]. ]

Recall that the e-contaminated noise class with nominal density f, is
F={f(z): f(z) = (1 —e)fn(z) + eh(z), heH}
The least favorable distribution (minimizing Fisher’s information) is [4]:
(1 = &) fa(@o)ek==), 2 < z
fr(z) = ¢ (1 —¢)fu(z), To < z < Ty
(1= e)falmr)e™=™=), >z,

where ¢ and k are related via

w1 fa(zo) + falz1) 1
g fn(m)dm * k B l1—¢

and where zo and z; are the endpoints of the interval on which l—nﬁ-l;;(:)

< k. The

resulting robust nonlinearity is

—k, z < zg
_ _.f.ir($) — —-f' x
gR($) - fL(m) - T_‘u(":(:_)), To<r< T

3.5.3 The Locally Robust Quickest Detector with Gaussian
Nominals

Once again, of particular interest is the case where f,(z) is the Gaussian density

function with zero mean and variance o2, i.e. fo(z) = ¢(z;00). Here, notice that

fa(2)
fa(2)

10Note that Ir(f) is independent of a. Consequently it is the shape, rather than the scale, of g
that determines the local performance.

T

g

<k
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implies z; = —z¢ = ko3. The least favorable distribution is now

fo(z) = \/Efro p{_'gf} |2 |< kog
L (D) - 1—e k2o 2
exp{ —k I:z:|} | z |> ko

V2mao
where
290(kf;;o, %) _9p (~koo) = —=—
and
—k, z< —ko}
or(e)=1 &, |l < ho?
k, z>kol

It is interesting to note that the form of this test, a clipped linearity, is the same as
that of the large signal test with one exception: the robust weak signal nonlinearity
is not a function of the signal strength 6, since it arises under the assumption that
6 — 0.

By using the robust nonlinearity and the least favorable distribution, we can now

compute the minimax efficacy, which is just Ig(fr). We have

E(fr,98) = /: (;zg;)z fo(e)dz

1—¢ ka? z? 2 /0.2 2k? (1—-5) 2 2

- = —z? /20 d k /2/ —ka:d

e T+ —— T
ot /kaz Vero V2ro

_ l-e _ 2 ( ) -k /2

= — [1 28(—ka) — 2ko?p(ko?; o )] o

_ 1 (1 21— e)(1 + Ko?)p(ko’; aﬂ) L 2H(1=6) s
o k 2o

3.5.4 Comparison of Several Procedures for Local Quickest

Detection

The asymptotic performance for other detector and noise combinations can also be

obtained by computing the efficacy and then applying (3.20). We can also define
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the robustness index x in the same manner as in Section 4. Suppose we have two
procedures, labelled A and B, and let § be some small positive number close to zero.

The performance gain of procedure A relative to procedure B is

Spats (3.22)

We can recognize the final expression to be the relative asymptotic efficiency from the
classical hypothesis testing literature. Again, x can also be interpreted as a measure
of the loss or gain in expected delay for one procedure relative to another as described
in Section 4.

In Figures 3.27-3.32, the performance for the weak signal scenario is plotted versus
€. Three distributions from the e-contaminated class are considered: the Gaussian
distribution, the Gauss-Gauss mixture, and the least favorable. In each case, the
nominal density is Gaussian with zero mean and unit variance.

For each noise type, two plots are given. First, the efficacies resulting from the
linear, sign, dead-zone, and robust detectors are computed; the equations for these
are given in Appendix E. Second, the performance gain of the robust procedure with
respect to the other three is illustrated; that is, x4 p is computed as in equation
(3.22), where procedure A is the robust procedure, and procedure B is, in turn, each
of the other procedures.

In Figures 3.27 and 3.28, we see that for Gaussian noise the robust detector
designed assuming a contamination ¢ outperforms both of the nonparametric tests,
but not surprisingly, it is not as effective as the linear test. Nevertheless, the loss in
performance in using the robust rather than the linear procedure is less than 10% for
£ < 0.1, the range of interest in many real world problems.

The results for Gauss-Gauss mixture noise with 02 = 100 are shown in Figures
3.29 and 3.30. Again, the robust detector outperforms the nonparametric alternatives.

However, notice this time that the performance of the linear detector is very poor
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Figure 3.27: Efficacy vs. € for Gaussian noise.
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Figure 3.28: Robustness index vs. ¢ for Gaussian noise.
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Figure 3.30: Robustness index vs. ¢ for Gauss-Gauss noise, 7y = 100.
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when any more than a small amount of contamination is present.
Finally, the performance for the least favorable noise is shown in Figures 3.31 and
3.32. From the the saddlepoint condition of Proposition 2:
I;leagxn(gs for, fir) = n(gr; for, fir)
and so we expect that the robust detector will outperform each of the others for
any ¢; the plots confirm this expectation. Notice that for small contamination, the
performance of the linear and robust detectors is close. This is not surprising, since for
small £, the least favorable distributions will still be close to the nominals. However,
the performance of the linear detector falls off faster than any of the others as £ gets

large, and the potential gain in using the robust procedure over the linear detector

increases.
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3.6 Conclusions

This chapter examines procedures for robust quickest detection when the noise densi-
ties are known only to lie within some uncertainty classes, each of which was defined
in terms of an allowable deviation from some nominal density. The robust detector
was derived by applying the minimax criterion directly to the asymptotic perfor-
mance measure for Page’s test, 77, and it was shown that 7 exhibits a saddlepoint
solution. It was also shown that when the robust processor is used, 7 is equal to
the Kullback-Leibler divergence, and that the least favorable densities are those that
minimize this quantity. Moreover, a formal connection between robust quickest de-
tection and robust hypothesis testing was established, namely the processor used for
the former is just the log-likelihood ratio of the least favorable densities in terms of
risk. Thus, we were able to apply previous results on robust hypothesis testing to
the present problem. This enabled us to obtain the robust quickest detectors for the
g-contaminated and total variation noise uncertainty classes.

The performance of the robust procedure was compared to that of several non-
parametric versions of Page’s test via the computation of 7 versus both SNR and level
of uncertainty. It was shown that the robust procedures exhibit good performance
over a range of noise distributions within the uncertainty class and outperform the
nonparametric alternatives in most cases, yet they are more conservative than the
optimal (when the densities are known) procedure. However, procedures which are
optimized for the nominal distributions, which in this case were Gaussian, suffered
severe degradation in performance in some instances when the true distributions lay
elsewhere in the uncertainty class. For example, the procedure using the optimal pro-
cessor for Gaussian noise, the linear processor, was shown in Section 3.4.1 to produce
expected delays which were greater than those of the robust procedure, in some cases

by nearly a factor of eight. It was also shown that in situations where a fixed false
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alarm rate is desired, the delay to detect the disorder can be maintained at reasonable
levels over the entire class if the robust procedure is used.

The locally robust quickest detection procedure was also derived by applying the
minimax criterion to the classical efficacy, which is directly proportional to the asymp-
totic performance in the weak signal scenario; in this case, the least favorable density
is that which minimizes Fisher’s information. The performance of the locally robust
procedure was compared to that of nonparametric alternatives involving the sign
detector and dead-zone limiter. The local version of the robust quickest detector ex-
hibited good performance over the entire noise class, outperforming both the linear
and nonparametric procedures in most cases.

As a potential area for future work, it would be interesting to examine the per-
formance of the robust procedure when there is a mismatch in the assumed noise
class. For example, one might assume that ¢ = £;, when in fact the contamination
is € # €1. One would suspect that for small mismatch, there would be only slight
degradation. This is an important area, since the contamination factor is often not
known exactly, but estimated from the data. This raises the additional question of
how good one’s estimate of ¢ must be in order to design a robust test. Also, the
method for deriving the minimax robust procedure via the asymptotic performance
measure could be applied to multivariate models. This method does not assume that
the process is scalar, and so some results should carry over directly. In Chapter 4,
we examine the related, but more specific problem of quickest detection for Gaussian

noise with unknown mean vector and covariance matrix.
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3.7 Appendices

3.7.A Computation of 7j for Various Noise/Detector Com-

binations Involving the e-contaminated Class

The general procedure for computing 7 is given in the text. Below, the performance
is computed for some specific cases involving the e-contaminated noise uncertainty
class. Throughout, the procedure is designed to detect a shift in the mean from —6 to
6, and the nominal distribution of the -contaminated class is Gaussian with variance

o2. The constants ¢y and ¢; are chosen to satisfy
- 0
q)(bo+8>+calq>< bo + ) _
[2f) Jo 1-—¢
—b; + 86 b +6 1
& ( 1+ ) 1e® ( 1+ ) _
Oo 0o 1—¢

where by = :—i;log cg and b, = g%log c1. Note that ¢; < 1 < ¢p, and so by < 0 < by.

Gauss-Gauss Noise, Robust Detector for the e-contaminated Class

In this section, 77 is computed where the robust detector for the e-contaminated class

1s used and the noise is Gauss-Gauss with contamination factor e:

(=) = (1= e)p(a;o0) + ep(ai o)

Here ¢(z;0) is the Gaussian density with variance o?; thus, the noise is nominally
Gaussian with variance o2, but is occasionally (with probability ) contaminated by
impulsive noise modelled as Gaussian with variance o2 > 2.

Define the following:

fo(2)2f(z+6)  fi(e)2f(z~ )
go(2)2¢(z + 6;00) $1(2)E¢(z — 6; 7o)
so(e)20(z +6;01)  so(z)Ee(z — 6;04)
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The robust nonlinearity is

f ( ) 10861; % <ag
= log IZ1E) _ #1(z) ¢
gR(:ZZ) = Iog fLo(w) - 108 4,;(,_.)7 c < ;5(1; <o

].Og Co, % Z Co

Therefore, we are required to compute
7 = wB{ga(z) | f,} (A1)

where wy satisfies

E{ewoyn(-‘t) | fo} =1
Observe that the linearity of the expectation operator allows us to write:
E{e*2®) | fo} = (1 — e)E{e"") | go} + eE{e*) | o} (A.2)
and
E{gr(z) | i} = (1 - )E{gr(z) | $1} + eE{gr(z) | <0} (A-3)
To compute E{e*092() | £}, we first compute E{e**9%(=) | ¢,}. We have

E{ewogn(:c) | o} = /Al cyso(z)dz + " [Z:Ezi

co(m)d:c+/A chso(z)dz

where 41 = {£ < ¢} = {e < by}, 4, = {a < £ <} = {b < z < b},
Az = {% > co} = {z > bo}. The integrals over A; and Aj are easy to compute. To

compute the A, term, first let v = -2:"—26; then:
[¢]

/Az [Z,EZ;JW o(z)dz = :’ \/217“/_1 exp {2—01% (2% +2(6 — o?v)z + 62)} dz

—26° ow bo 1 -1 202w\ \?
= 1— 2= —_— — 61— d
oo { e (I e (o (25

_26? o2 bo +0(1 — 242 by +6(1 — 252)
= exp s w|l—— d - & 0
%0 0o 01 %1
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Combining this with the other two integrals, we have

E{ensn® | o} = @ (bl 8 g)“‘é’@ (_bo ; 6)
01

01
—26? Ufw
Fer el

bo + 6(1 — 232) by + 6(1 — 232)
) dy 2
o1 o1

Also, observe that we can easily obtain E{e“9%(®) | 45} by noting that

E{e*92() | ¢} = E{e”9R(®) | ¢}

o1=09

Therefore using (A.2), we have that wp is the nonzero root of the equation

1 = (1- s)exp{_zazw(l —w)} [‘I) (bo = 2‘0)) —° (bl o 2w)>]

O'g ado (44}

28 [ ot bo + (1 — 25°) b +6(1 - 25
€ exp w|l—— ® 0 -9 g
] Op o1 o
o [(1 —e)d (b1 + 9) +ed (bl + 0)]
Jo g1

+ [(1 —e)® (“b° — 0) +ed ('b" — 9)] (A.4)

(23]

-+

A bisection routine can be used to obtain wy, where the search region is restricted to
the region where the right hand side of (A.4) is increasing.

E{gr(z) | f1} is computed similarly by first computing E{gr(z) | 1} and then
using the fact that

E{gr(z) | $1} = E{gr(z) | <1}|o, =0,

The final result is

E{gr(z) | f1} =logey [(1 — )2 (bla—; 9) ted <bl — 9)]

o1
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om0 o (2 20)]
+ %:;2—2 {(1 —¢) [‘I’ (boa: 6) -® (bla—o 9)} e [q’ (boa_l 0) -7 (bl": H)J}
It (S e U R L

Finally, 77 is obtained by using (A.1).

Nominal Gaussian Noise, Robust Detector for the e-contaminated Class

The asymptotic performance for this case is the same as in the previous section, where
we let ¢ = 0 in the Gauss-Gauss density function. That is, 7 = woE{gr(z) | #1} where

wp 1s the unique nonzero root of
by + 6 —by— 10
1 = c‘l"@<1+)+c‘5’¢>( 2 >
(24fs) 24y

ren{ ) [o (A2 g (b0 =2)

and

E{gr(z) | i} = logai® (bla_o 0) + log co® (_bo + 6)

2 —— a——
() e (o)
0o 4] 0o

Gauss-Gauss Noise, Linear Detector

If the noise is assumed to be the nominal Gaussian, the nonlinearity is g(z) = 3:7”.
0

However, it was shown in [2] that 7 is invariant to changes in scale. Therefore, for

simplicity, we eliminate the constant multiplier and use g(z) = z instead.
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For this case, wy is the unique nonzero root of
E{e*) | fo} = (1 — )E{e** | do} + eE{e” | o}
We can alternatively write this equation as
E{e*?® | fo} = (1 — &)My,(w) + Mgy (w)

where My, and M, are the moment generating functions for the Gaussian densities
$o and ¢, respectively, which can be found in a number of references (for example,

[10]). Thus, wo is the nonzero root of the equation

1=(1-c¢)exp{—bw+ %wzag} + cexp{—6w + %wzaf} (A.5)

This is a transcendental equation which can be again solved using a bisection routine

restricted to a suitable interval. The E{g(z) | fi} term is simply

E{g(z)| f} = (1—e)E{z|é}+eE{z|a}
= (l—¢e)f+ef =6

and so 7 = wpf for this case.

Gauss-Gauss Noise, Linear Detector

If the noise were simply Gaussian with variance o (¢ = 0), wo in (A.5) could be solved

for explicitly, namely wo = 3—2. Note that wp > 0, as expected. The performance is
0

then 77 = %. Alternatively, one could simply compute the performance directly using

the K-L divergence.

Least Favorable e-contaminated Noise, Linear Detector

_ 26x

The nonlinearity for this procedure is g(z) = i We are required to compute

7 = woB{g(z) | f1a}
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where wy is the non-zero root of the moment generating function equality
E{ewoy(z) | fLo} =1 (A.6)

Recall that

(1-e)do(z), <o
(1—e)cg*da(z), %f; >co

fro(z) = {

and
1—€)pi(z), L>c
fra(z) = ( 4(2) b 1
(1 — €)e1do(z), % <c
The left side of (A.6) is

(1—e¢) [ / b:o e fo(2)dz + é [ fl(m)da:}

where V—A—-—i—“;,e. We will solve the two integrals separately (in each case, this is done by
]

completing the square). The first one is

" e piegis = [7 e { L #1200 otga s oo
o(z)dz = _w\/é;aoexp 202 [:B +2(0 — ogv)z + ] T

—00

—2002v + ogv?

— ex b1 __L( +(6 z))z p
= exp 252 o o exp 207 z oav T

2
_ exp{——ﬂy n %Ugyz} & (bo + (¢ 0'01/)>

0o

_ exP{?a;”;w(w_ 1)}¢ (bo-l—ﬁ(l —-2w))

0 Oo

The second integral is derived in a similar manner. We have:

/boo e fi(z)dz = exp {?;;w(w n 1)} 3 <—bo +6(1+ 2w))

0 Jo

Thus, the value of wq is determined by obtaining the nonzero root of

- e {20t} erp(- L upe (ot HL=20))

Co

2 -
+lexp{iw}@( bo+9(1+2w))} _,
o4

Co 0 %o
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The term E{g(z) | fL1} is given by

(1—¢) [ég- fb :z:fl(a:)da:—l-cl / wfo(m)da:}

Compute the two integrals separately. The first is:

20 pe —(z — 6)?
RN
0‘0 b1 27{'0’0 20-0
26% oo 1 —y? 20 (> gy —y?
= — —=rdy+ — — b d
ol /bl-a 270 P { 20k v+ o2 Jo,-6 /270y xP 203 Y
202 (—b, + 8 20 —(b; — 0)?
_ _2_q)< L+ )+ __exp{_(_z__z_l}
Lo 0o T Og 20§
where the change of variables y = z — 6 was used. Similarly, the second integral is

2 _ 2
2y (hrl) (10, (o)

ol oo T 09 202

Combining the two, we have

E{g(=) | 1} (1—5{ - [ ( b1+9)_cl<1> (bl;go)]
e

7 can now be computed.

3.7.B Computation of 77 for Various Noise/Detector Com-

binations Involving the Total Variation Class

The general procedure for computing 7 is given in the text. Below, the performance
is computed for some specific cases involving the total variation noise uncertainty
model. Throughout, the procedure is designed to detect a shift in the mean from

—6 to 6, and the nominal distribution of the total variation class is Gaussian with
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variance o2. The constants ¢y and ¢; are chosen to satisfy
Co @(bo—*—G)_ 1 (p(bo—e)
1+c¢ Oo 1+c 0o
_ (5] F —bl —8 + 1 & —bl -+ 0 —
1+ ¢ o I1+a Jo

where by = %‘Z-logco and b; = ‘—;—g;logcl. Note that ¢y < 1 < ¢, and so by < 0 < b;.

Ny N O

Gaussian Noise, Robust Detector for the Total Variation Class i

In this section, 7 is computed where the robust detector for the total variation class

is used and the noise is Gaussian with variance o2.

Let ¢(z; o) denote the Gaussian density with variance o2, and define the following:

$o(z) = p(z + 6;00) ¢1(z) = p(z — b;00)

The robust nonlinearity is

log co, o S Co
fL]_((E) é1(x i @
gR(m)=108m= 108;3%;%, < g =a

].Og C, %' 2 C1
We are required to compute
7 = woB{gn(z) | 41} (B.1)
where wy satisfies
E{e*9r() | 4} =1

First we need to compute E{e“*97(%) | ¢,}. However, notice that this has already
been obtained in Section B.1.1., with the exception that ¢y and ¢; (and also by and

b,) are switched. Therefore wp is the nonzero root of the equation

1 = &% (b°+9) + g (_bl _9>
[2f) 0o

N exp{—azazw(l _w)} [q) <b1 +6(1 — 2w)) s (bo+0(1 —2w))}B.2)

2
0 0o Jo
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89

A simple bisection routine can be used to obtain wp, where the search region is

restricted to the region where the right hand side of (B.2) is increasing.

The expression for E{gr(z) | ¢1} was also obtained in Section B.1.1. with the

aforementioned constants swapped. The result for the present case is

0

by — 0 —~b + 46
E{gr(z) | 1} = logco® ( 0 ) + log ;@ ( Lt )
Jo (od
2 — —
4 Oo (2fs)

/2 6
+ —— —
™ Og

-

2
203

Finally, 77 is obtained by using (B.1).

—(b — 9)2} _ exp{—(bl —6)?

!

2
20§

Least Favorable Total Variation Noise, Linear Detector

The nonlinearity for this procedure is g(z) =

7 = woE{g(x) | fr:}

2z We are required to compute
%

where wg is the non-zero root of the moment generating function equality

Recall that

fLo(fE) = 9

and

le(iL') =

4

E{eww(l‘) | fLO} =1

1':CO (d)o(w) + ¢($))’
¢0(z)7
e (Bo(2) + ¢(2)),

i=(¢o(z) + ¢(2)),
¢1($),
11 (o(2) + 6(2)),

(B.3)

1
do

$1
CO<¢0

%261

<C0

¢0§Co
é
CO<4>0

[:2%
do 2 o
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The left side of (B.3) is

[ e oa) + du(eNo + [ emgalo)d + o [ (o) + du(e))ds

+

These integrals can be solved by collecting the powers of the exponentials and com-

pleting the square. The result is that wy satisfies

L e i fee{ e - o (R 22))
+ exp{i—ggw(l +w)} 3 <b° —d +2w)>}

Oo

RER W EFH WE ErIEE)
4 exp {%%Zw(l +w)} ® <—61 +9(1+2w)>}

O

s [ o (A2 (-2

The term E{g(z) | fr1} is given by

bo 20z 120z 2%z
1 -T-Oco - (¢°($ +¢i(z dm+/ o2 ¢1($)d$+1 T o /bl = (do(z) + ¢1(z)) dz

Uo

These integrals can be solved via a change of variables followed by integration by

R e {2 e {5
() = ()

i (e [ () e {52
() =)

Are e { TG e {557 ]
() -+ (27)]

parts. The result is

E{g(z) | fra} =
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and 7 can be obtained directly.

3.7.C Variance of the Least Favorable Distributions

In Section 4 the effective signal to noise ratio was defined as

E{X | i}

¥ = — 1)
VVar{X | f1}

The variance of the least favorable distributions is simply given by
Var{X | fr1} = B{X? | fu.} — (B{X | fra})’

The expressions for E{X | fr1} and E{X? | f11} are given below for each of the two

noise classes.

e-contamination Model

B{X | fu} = [ afule)ds

A S Rl
+ 9(1\/—57; [l(ﬁw:;o_q(}p (b1+:>{] 200 H

E{X?| fz.} = /:o 2 fr1(z)dz
a(l —é) {@%_;_Fem{%)—z} + (6% + 02)® (h; o)}
-9 { ao(%bl) exp { _(b;,a—g 9)2} + (6% + 02)@ (“bf’; 9)}

I
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Total Variation Model

E{X|fu} = [ afu(z)d

- oo () o (5)
- gl e
r gl (F5) - ()]
- gl 15
- o (5) o (5)]
gl

B{X*| fu} = [ ‘: 2 fra(z)de

Tre {(92 o) [ (b"ta) 3 (b°a_0 ‘9)}
53@27—@ e;@{—(b;:(é 9)2} 3 o—o(927-|r- bo) exP{—(bgcr_g 9)2}}

e dls (57 2 (557)

1 + a
0'0(9 -+ bl) —(b]_ - 0)2 Uo(b]_ - 0) _(bl + 6)2
or P { 202 + or F 202

)2 ()

) }_(bl+9)exp{_%'a_g—€)2”

(6% + o) [ (

% [(bo +6) exp{ (%o
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3.7.D Performance Computations for Several Noise Distri-

butions

Below are plots of D versus log T for several noise distributions and quickest detec-
tion procedures. The plots were obtained via the Markov approximation technique
described in Chapter 2. Estimates of 7 are obtained by measuring the slope of the
performance curves for large T and taking the inverse. The particular detectors that
were used are indicated on the graphs.

All values of 77 and 7 agree within 2%, and most are identical to an accuracy of

three decimal places. Therefore, the approximation 7 = 7 is valid.

Table D.1: Gaussian noise

SNR =0dB SNR = -10 dB
test computed | measured || computed | measured
linear 2.000 1.999 0.200 0.199
sign 1.139 1.139 0.126 0.126
dead-zone 1.493 1.493 0.161 0.161
robust, € = 0.1 1.520 1.522 0.155 0.153
robust, ¢ = 0.01 1.822 1.812 0.193 0.192
robust, § = 0.2 1.495 1.495 0.136 0.137
robust, § = 0.05 1.723 1.721 0.179 0.177




Chapter 3: Robust Quickest Detection

Table D.2: Gauss-Gauss noise, € = 0.01

SNR =0dB SNR = -10 dB
test computed | measured || computed | measured
linear 0.389 0.393 0.093 0.094
sign 2.006 2.006 0.243 0.243
dead-zone 2.603 2.605 0.309 0.309
robust, € = 0.01 2.995 3.018 0.369 0.366

Table D.3: Gauss-Gauss noise, € = 0.1

SNR =0dB SNR = -10 dB
test computed | measured || computed | measured
linear 0.730 0.732 0.138 0.139
sign 3.001 3.001 0.976 0.976
dead-zone 3.057 3.057 1.135 1.135
robust, € = 0.1 3.040 3.060 1.198 1.191

Table D.4: Least favorable e-contaminated noise, € = 0.01

SNR =0dB SNR = -10 dB
test computed | measured || computed | measured
linear 1.511 1.515 0.188 0.191
sign 1.240 1.240 0.142 0.142
dead-zone 1.568 1.568 0.176 0.176
robust, £ = 0.01 1.780 1.780 0.204 0.203

94




Chapter 3: Robust Quickest Detection

Table D.5: Least favorable e-contaminated noise, e = 0.1

SNR=0dB SNR =-10dB
test computed | measured || computed | measured
linear 1.285 1.298 0.189 0.190
sign 1.537 1.537 0.202 0.202
dead-zone 1.526 1.526 0.203 0.203
robust, € = 0.1 1.579 1.567 0.233 0.233

Table D.6: Least favorable total variation noise, § = 0.05

SNR =0dB SNR =-10 dB
test computed | measured || computed | measured
linear 1.408 1.407 0.192 0.191
sign 1.353 1.353 0.162 0.162
dead-zone 1.615 1.615 0.190 0.190
robust, 6 = 0.05 1.742 1.741 0.214 0.213

Table D.7: Least favorable total variation noise, § = 0.2

SNR =0dB SNR = -10 dB
test computed | measured | computed | measured
linear 1.286 1.285 0.189 0.188
sign 1.538 1.538 0.211 0.211
dead-zone 1.522 1.522 0.198 0.198
robust, § = 0.2 1.580 1.583 0.241 0.240
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Figure 3.33: Performance for Gaussian noise: ¥ = 0 dB.
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Figure 3.34: Performance for Gaussian noise: ¥ = —10 dB.
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Figure 3.36: Performance for Gauss-Gauss noise: € = 0.01, y = 100, ¥ = —10 dB.
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Figure 3.38: Performance for Gauss-Gauss noise: ¢ = 0.1,y = 100, ¥ = —10 dB.
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Figure 3.40: Performance for least favorable e-contaminated noise: ¢ = 0.01, ¥ = —10 dB.
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Figure 3.42: Performance for least favorable e-contaminated noise: ¢ = 0.1, ¥ = —10 dB.




Chapter 3: Robust Quickest Detection 101

180 T
SO S ................ T— — B — Ao
S I ................ ................ ................ ey ..............
B S ................ R N .............
SN S—— N e G A 2

BOF - ................ - ............. 7 P

O IS S /0 o T

7y IS S o Mmear G S _

2] SECTERT TR .......... : ................ . ................ e ,
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Figure 3.46: Performance for least favorable total variation noise: § = 0.05, ¥ = —10 dB.
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3.7.E Efficacy Computations for the Weak Signal Case

The efficacy is

o ([ 9(2)f(z)dz)’
[ ¢*(z)f(z)dz

The computation of the two integrals, although tedious, is straightforward. Therefore,

only the final expressions are given for each case.
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Chapter 4

Robust Quickest Detection Under

Mean & Covariance Uncertainty

4.1 Introduction

In this chapter, we continue our investigation of robust quickest detection procedures.
In the previous chapter, robust procedures were investigated for the case where the
noise distributions were known only to lie in some uncertainty class. Here, we consider
the case where the noise is multivariate Gaussian, and where the uncertainty exists
in the mean vector and/or covariance matrix.

For the classical known-signal hypothesis testing problem in Gaussian noise, it
is well known that the procedure that maximizes the probability of detection for
a given false alarm probability (i.e., that satisfies the Neyman-Pearson criterion) is
the matched filter, which is the filter that maximizes the output signal-to-noise ratio
(SNR), followed by a comparator [9]. It is perhaps then not surprising that the
matched filter is also the optimal processor for the quickest detection problem when
the noise is Gaussian: the log-likelihood is the optimal processor in the sense of Lorden
(see Chapter 2), and for the Gaussian case the log-likelihood function is exactly the
matched filter.
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The optimal processor when the noise is Gaussian is linear, and is based only
on the first and second order statistics. If the noise is non-Gaussian, the optimum
processor will in general be nonlinear, and hence the matched filter processor will be
suboptimal. Unfortunately, the derivation of the optimum processor for non-Gaussian
noise is not always straightforward, particularly if the noise cannot be characterized
exactly. By comparison, the matched filter maximizing the SNR is a “common,
simple and generally well-founded engineering technique [3],” and therefore may be
an attractive option even when the noise is not Gaussian. !

Much work has been done in the area of robust matched filtering (for example,
see [4] and references therein, and for a general treatment, see [8]); of particular
interest in this chapter is the work on minimax robust discrete-time matched filtering
of Verdu and Poor [10]. The main objective of this chapter is to formally establish
the connection between robust matched filtering and robust quickest detection in
multivariate Gaussian noise. Once this is done, we will see that all of the techniques
from the former can be used directly to obtain solutions for the latter.

Section 2 contains the main result of this chapter. After stating the problem
formally, it is shown that the minimax robust matched filter is exactly the optimal
processor in the sense of Lorden. This is done by applying the minimax criterion
directly to the asymptotic performance measure. Different types of signal and noise
uncertainty are investigated in Section 3. It is shown that many of the results from [10]
showing how to obtain the robust matched filters can also be used to derive the robust
quickest detector. The asymptotic performance measures for the robust procedures
are computed, and several examples are provided. In Section 4, two related issues
are addressed. First, an alternative “minimax tuning” method which appears in [1] is
shown to be equivalent to our approach. Finally, the computation of the asymptotic

performance is discussed for the more general case when the noise is non-Gaussian.

1 An exception is when the noise is impulsive. See [3] for details.
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4.2 General Solution for the Robust Quickest De-
tector

Consider the following disorder problem. The multivariate real-valued independent
random variables X1, Xa, . . . are observed sequentially, where X; is generated under Hp
for2 =1,...,m — 1 and under H; for 2 = m,m + 1,.... The two hypotheses are
multivariate Gaussian:

Hy : x;~N(-s,X)

H : x;~N(s,X)
where s € R, © € R**% and ¥ is positive definite. The means are chosen to
be symmetric for simplicity, but without loss of generality. Furthermore, it is known
only that (s,X) € SXN, where § and A are independent signal and noise uncertainty

classes, respectively. 2 In this work we consider classes of the form:

S = {s:[s—soll <&}

N = {Z:]|2-%f <&}
Thus, the uncertainty is modelled as a deviation from the nominal parameters s and
Yo. The particular norms used will be discussed in the next section. 3

Page’s test is defined here exactly as in Chapter 2; namely, the statistic
Sn = max {Sp-1 + g(x), 0}
is recursively computed, and a disorder is declared when the stopping time
N=inf{n| S, > h}

ZNotice that this is equivalent to saying that (fo, f1) € Fo x F1, where

Fo = {f:f(x)=] Pexp{-1(x+s)TS " (x+5)}, s€S, DEN
Fi = {f:f(x)=] Texp{-1i(x-s)TS}x—-5s)}, s€S,DeN
In this chapter, the former notation will be used so that it is clear that the uncertainty lies only in

the mean and covariance.
31t is not difficult to verify that S and N are also convex.

l
2%

|
27
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occurs, where h > 0 is some prespecified threshold. For Gaussian noise, the optimal
processor is linear; that is, the processor g(x) = h”x, for some h € ®*. The SNR for

a single snapshot is
I (h,S) |2 Ay
(h,Xh)

and a direct application of the Cauchy-Schwarz inequality

p(h;s, %)

|(h,s)[* < (h, Zh)(s,=""s)
reveals that p is maximized when h satisfies
Th=«ks (4.1)

where & is any nonzero real constant; in this case, p(h;s, &) = (s, 27 's). * Equation
(4.1) defines the well-known discrete-time matched filter, the processor that maxi-
mizes the SNR. Notice that p(h;s,X) is the same under either Hy or H;, since we
assumed that the respective mean vectors are symmetric.

The minimax solution for the robust matched filtering problem, (hg, (sz, 1)), is
the solution of
where (sp,Xr) denotes the least favorable pair in S x A, and Z hg = ks;. Here
H = R*, but in general H can be an arbitrary Hilbert space. In [8], it is shown that
a saddle point solution exists for this problem, that is:

s p(h;s.,Br) = p(hr;sp, Br) = (5,522%( N p(hr;s,X) (4.2)

This allows the maximization and minimization to be determined separately rather
than jointly. The following lemma (reworded slightly), which appears in [10], charac-

terizes the saddle point solution:

4(x,y) = xTy is the inner product of x and y.
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Lemma 2: (hg, (s, 21)) is a saddle point for the robust matched filtering problem
if and only of

1. ZLhR=SL,
2. |(sz,hr)| < (s, hr})|, Vs€S,

3. 0< (hL,(EL — E)hL), VY € N

We now show that the robust processor for Page’s test is gr(x) = chfx, where cis
any positive real constant, thereby establishing a formal connection between minimax

robust matched filtering and quickest detection.

Proposition 4: If (hg,(sg, 1)) is the minimaz solution for the matched filtering
problem, then (ggr,(sr, X)) is the asymptotic minimaz solution for the quickest de-

tection problem, where Sphr = ks, k # 0, and gr(x) = chkix, ¢ > 0.

Proof:

Let fro ~ N(—s,%), and fr1 ~ N(s,X), and assume «k = 1 for convenience (and
without loss of generality, since x can otherwise be incorporated into s;). We would
like to show that (4.2) implies

;s1,%1) = n(gr;s1,5r) =  mi ;8,2 4.3
maxn(g; sz, £1) = n(9r; sz, Zr) (S,EI)-E?an(gRS ) (4.3)

Since 7 is maximized when g is the log-likelihood ratio (cf. Chapter 2), the left
equality is achieved when g(x) = log %—(z(% = 2sT%7'x = 2h}x. However, recall that
i.) when g(x) is the log-likelihood, = #, and i.) % is invariant to scale changes.
Thus, the left equality is also achieved for g(x) = cthix where ¢ is any positive real
constant.

Now we need to show that the right equality holds when (sp,Xy) is the least
favorable pair for the robust matched filtering problem. To do this, first recall the
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definition of the lower bound # (cf. Chapter 2) for Page’s test implemented with
processor g(x):

7= woE [g(x) | H1] (4.4)

where wq is the non-zero root of the moment generating function equality
E [exp{wog(x)} | Ho] =1
Let fo ~ N(—s,%) and f; ~ N (s,Z). When the robust processor is used, wp satisfies
1=/wwvmga=/ﬂwmmﬁ (4.5)

where v2cwohg. Now observe that this last expression is just the vector moment

generating function as a function of v. Therefore,
T 1 T
l=exp{—v's+ 5V v}

Taking the log of both sides, rearranging terms, and substituting back in for v, we

have

1
cwohks = Eczwghgzz,hg

of which the nonzero solution is

2h%s

“o= ChgthR

Also,
Elgr(x) | Hi] = chs

Therefore, the lower bound (4.4) is

hTs2 2
ﬁ(gR§5,2)=2’ i | =9 |(hg,s)]

hlxhz - (hg,Shg) (4.6)

(Notice that this is independent of the scale factor c, as expected).
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The right expression in (4.3) can now be lower bounded as

: : |(hg,s)[’
;8,5) > min  2—F——"—
(S,Eglelzélan(gR ) (S,E)ESXN (hR; 2hR)
= 2 min  p(hg;s,X)
(S,E)eSx
= 2p(hR; SL, EL) (47)

where the last expression follows from (4.2), and (sz, Xz ) is the least favorable pair

for the robust matched filtering problem. Now

p(hR;SL,EL) = <SL,EI_—JISL>
1
= -2—1(f1L,foL)

1
= 577(93; sz, 2r) (4.8)

where I(-,-) is the K-L divergence. Thus, (4.7) and (4.8) imply that

min _7(gr;s,Z) = 7(9r; 5L, Tr) (4.9)
(s,£)eSx
Conversely, since the least-favorable pair lies in S x N, we also have that

min :s,X) = min min 's, %), s, 3
e T {<s,z)¢(sL,zL)"(gR ) nlg; s L)}

< n(gr;sc,ZL) (4.10)
Finally, (4.9) and (4.10) together imply

min ;8,0) = ;SL, 2
(s,z)eSan(gR ) = nlgri s, Br)

and so (4.3) holds. |

We have seen that for the Gaussian case, the least favorable pairs can be obtained
via the matched filtering formulation. Now, we would like to state some of the results

for particular types of signal and noise uncertainty classes.
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4.3 Particular Solutions for Various Uncertainty

Classes

4.3.1 Signal Uncertainty

In this section, three signal uncertainty classes are considered, all of which are based
on the [, norm; it is assumed that the noise covariance, ¥, is fixed and known. In
[10], necessary and sufficient conditions for (hy, (s, Xo)) to be a saddle point solution
of the minimax robust matched filtering problem (i.e., to satisfy (4.2)) are given.
Proposition 1 of the previous section confirms that these same conditions can be used
to obtain the optimal processor for the quickest detection problem. The asymptotic
performance measures for the nominal and robust procedures are determined below.
Finally, a simple example illustrates the utility of the previous results from robust

matched filtering in the design of robust quickest detectors.

Types of Signal Uncertainty

Since the robust processor is that filter which is matched to the least favorable signal,
we have that hy, = $3's;, regardless of the choice of the class S. The three types of
uncertainty classes are listed below, along with the necessary and sufficient conditions
derived in [10]. 3 |
o Mean-absolute distortion (I, norm): S; = {||s—so [1< A}
For:=0,1,...,k—1:
szi = soi — 6 sgn(hza)
where

. A
5,' =01if IhLil < M=]__gnzﬁc_1 thjl

=U,00y

SFor the most part, the notation we use here is the same as in [10].
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and

k-1
S s-a

1=0
is satisfied. If the noise is uncorrelated, that is 3o = diag(o2,...,07_,), then the

following closed-form expression can be derived:

hri =

hOi; I hOi 'S o
ngn(hoi), | ho{ l> C

where C satisfies

k—1
3 ol hoi | —C)* = A

=0
o Mean-square distortion (I norm): Sz = {|| s —so ||2< A}
hL = (20 + Uf])—lso
S1, = §g — Uth
where o2 is obtained by solving

A=l (Zo+oI)so |

o Mazimum-absolute distortion (I norm): Sz ={|| s —so [|< A}

Forz=0,1,...,k—1:

soi— A, hr; >0
Spi =
sui +4, hr; <0

If the noise is uncorrelated, then

So,:'—A, A < S0;
spi =194 0, ~A<syu <A

soi + A, spi < —A
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Unfortunately, a general closed-form solution is only available for the class S,; for
the others, a closed-form solution is available only for uncorrelated noise. It has been
suggested that numerical techniques might be used to obtain hy for §; and S3. This

point is discussed further at the end of this section.

Asymptotic Performance Under Signal Uncertainty

We would like to compare the robust quickest detector to the nominal version (that
is, the one which is optimal for the nominal parameters (so, Zo)) for different values
of s. To do this, we compute 7 for each case of interest, as shown below.

In the proof of Proposition 1, the lower bound on asymptotic performance for the
robust procedure (gr(x) = h%x) when the true parameters are (s,X) was derived in
the proof of Proposition 1; the result is given in (4.6). This same derivation applies to
the case where the assumed operating point is (s, Xo), but the true pair is (sz, %o);
one simply makes the substitutions ggr(x) « gl(s)zA:h:ITx, hg « hléﬁalsl and s « s,

in (4.6). The result is

(91352, 5 )—_—2————|<hl’s’2)l2 (4.11)
791, 82, 20 (hy, Zohs) .

Thus, 7 for the robust test operating at the nominal point is given by simply substi-
tuting s;, — s; and sy — s,. This gives:
2
(om0, £
s _

T\9R; So, 0) S%‘EEISL
Similarly, 77 for the nominal procedure when the least favorable signal is present is
obtained when go(x) = hgx, where so — s; and s — s, in (4.11); we have:
l st ¥ylsy

st S5 tso

2
7(go; sz, Lo) = 2 l

In Chapter 2, we saw that when the log-likelihood ratio is used to process the

data, then 7 = 7, and 7 is equal to the Kullback-Leibler (K-L) divergence. When
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fo ~N(=s,%) and f1 ~ N (s, L), it is easy to verify that
I(f1, fo) = 2572 1s
Thus, 7(go; S0, o) = 257 5 'so and 7(gz; 51, Do) = 25355 sz

Example

Here, we present an example which graphically illustrates the decision regions for each
type of signal uncertainty, following the general design procedures detailed earlier. It

is desired to design a robust quickest detection procedure where the parameters are

nominally

3 10 O

Sg = and 20 -

1 01

with an uncertainty parameter of A = %
® s & 81
0.3
ho = 261So =
1

Choose C such that
1003-C)Y +1-C)r=A

When A=1,C = % Thus,

0.3
hL = and S, = EOhL =

0.5 0.5

We can now compare the asymptotic performance for the nominal and robust

procedures when the observations are A'(£sz, Xo). Using the results shown earlier
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6 o0 R
0 1 0.5
610 3
0 1 1

-1
_ 10 0 3
7(gz;sL,20) =2 x (3 0.5) = 2.300
0 1 0.5

Therefore, for the least favorable signal sy, the robust quickest detector outper-

in this section, we have

= 2.063

ﬁ(go;SL,Eo) =2 X

and

forms the nominal procedure, as expected.

esc S,

First, solve for o2, where

a;
A
1402

3
(Bo +021) o, = o7 ( 10+e3 ) =A
2

As pointed out in [10], the left side is monotone increasing in 2. Therefore, it is
easy to iteratively determine o2 (for example, via a bisection routine): the result

for A = 1 is 02 = 0.8079. Thus

0.278 2.775
hy = and sy =
0.553 0.553

For this signal uncertainty class, 7(go; sz, Zo) = 2.021 and 7(gz; sz, Zo) = 2.152.

o= (12)- ()

05683

We have directly that
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and so

0.25
0.5

h; = ZEISL =
Finally, 7(go; sL, Zo) = 1.645 and 7(gr; sz, Zo) = 1.750.

Notice that for fixed A, both 7(go; sz, Yo) and 7(gr;sr, Xo) decrease with each
class. This fact is not surprising since S; C Sz C S3. We see that the asymptotic
performance is inversely proportional to the amount of assumed uncertainty, a fact
that agrees with intuition.

The uncertainty regions for the above examples are graphically illustrated in Fig-
ures 4.1 through 4.3. Let g(x) = h7x, where h is an arbitrary linear processor. Since
Elg(x) | Hi] = —E[g(x) | Ho] > 0, observe that the decision regions in each case
are separated by the hyperplane hTx =0 (the hyperplane is simply a line in these
examples). For each signal class, the separating hyperplanes for the nominal and ro-
bust procedures are shown. The slopes of the boundaries are dependent on the noise
covariance Xg. For example, when ¥, = I, the hyperplanes are perpendicular to the
line connecting —so and s, (or —sz, and sg); on the other hand, when the condition
number of the covariance is not unity (the eigenvalues are not all the same), as in our
example, the hyperplanes will be “skewed” with respect to this line.

We now examine the design tradeoffs involved in choosing A. In Figure 4.4,
the asymptotic performances of the nominal and robust procedures are compared as
a function of A for the class S, (similar plots can be obtained for the other two
classes). The nominal pair (so,Xo) is the same as in the previous example. Each
plot of 7 versus A is labelled with a pair of the form (g,s), which indicates that the
procedure with processor g(x) was used, but that the true mean vector was s (there
is still no uncertainty in the covariance matrix). Notice that the robust procedure
implemented when the true signal is the least favorable, sy, outperforms the nominal

procedure for all choices of A. However, this is at the price of reduced performance
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T hIx=0

Figure 4.3: Signal uncertainty class Ss.
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when the signal is in fact sq.

Now suppose that a robust quickest detection procedure is designed for a signal
distortion of A/, but that the true distortion is A; this scenario is depicted in Figure
4.5. Observe that the procedure with A’ = 1.0 exhibits performance that is almost
identical to the optimal procedure (designed for distortion A) when the 0.75 < A <
1.5, but that the performance degenerates with respect to the optimal and nominal
procedures for A < 0.5. Similarly, the performance of the procedure designed with
A’ = 0.25 is reasonable for A < 0.5, but declines compared to the optimal procedure
over the rest of the interval. This illustrates a robustness of a different sort: namely,
that good performance can be obtained using the robust procedure even if there is
some mismatch in the assumed and actual levels of distortion.

In Chapter 3, the performance of two procedures were compared by computing
the “robustness index,” which was the ratio of the #’s for each. This approach is
also used in [10] in the context of minimax robust matched filtering in discrete time,
and, while not included here, an analogous analysis can be used to compare robust

quickest detectors.

Obtaining s;, and h;, When the Noise is Correlated

For classes S; and Sz when the noise is correlated (X, is not diagonal), the least
favorable signals can only be written as a function of the robust filter; that is, sy =
s;(hr). In these cases, s; and hy must be determined numerically. One possible
approach to accomplish this is outlined below.

For both &; and &3, the uncertainty region is bounded by the hyperplanes de-
scribed by the equation ||s — so|| = A. For example, when so = (3 1)T and the o,
norm is used, the region is just a square, as shown in Figure 4.3. In Figure 4.6, a
blowup of S3 is shown for A = % Notice that the region is simply the intersection of

the four half-planes (which are just lines in this case) z; > 2.5, z; < 3.5, o > 0.5,
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Figure 4.4: Asymptotic performance computations for the signal class Sj.
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Figure 4.5: Design tradeoffs in selection of A’ for the signal class S,.
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and z4 < 1.5. Let

-1 0 -2.5

1 0 3.5
A= and b=

0 -1 —-0.5

0 1 1.5

Then the uncertainty region is equivalently described by the inequality Ax < b,
where x > 0. In general, when x € ®*, the uncertainty region is described by the

intersection of 2p hyperplanes. It is not difficult to see that S; can also be described
in this manner.

z2
1.5+

0.5

Z1

Figure 4.6: Signal uncertainty class S3.

As discussed earlier in this section, the robust processor is simply the log-likelihood
ratio for the least favorable distributions, namely, those whose mean vectors are +s;.
It was also shown that sz is chosen to minimize the K-L divergence, I(f1, fo) =

2sT%;'s, where s € S. Therefore, the least favorable signal can be obtained by
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solving the following constrained minimization problem:

minimize s’ %;'s
subject to Ax<b, x>0

This is the well-known quadratic programming problem, which has been studied thor-
oughly. In [2], it is shown that this problem can be solved using the modified simplez
method by applying the Karush-Kuhn-Tucker conditions, which are necessary and
sufficient for an optimal solution to exist. In [5], the solution is determined by apply-
ing a descent procedure to the dual problem. The details of these approaches can be

found in the references listed.

4.3.2 Noise Covariance Uncertainty

In this section, we assume that the signal sy is fixed and known, but that the noise
covariance X lies in the uncertainty class A/. This situation might arise in a detection
scheme designed to indicate the presence of a disorder, where the observables, x,
are snapshots obtained via multiple sensors. As discussed previously, if the sensor
covariance, X, is known, the optimal processor, g(x), is the log-likelihood ratio. On
the other hand, when ¥ is not known, a natural approach is to investigate alternative

robust processors.

Types of Noise Uncertainty

In [10], two noise classes of the form
N={2:|Z -2 <X >0}

are considered:
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o Ny ={Z:||Z - || <&,X > 0}, where ||| is the unit matriz norm;

that is, any norm with the property that ||I|| =1

hL = ZEISO

EL = 20+€I

o Ny ={X:||Z -2 <&,Z >0}, ||| is the Euclidean norm;
that is, ||A]; = £k Thas [(4)3]

hL = (EQ+EI)—1SQ
Y = EO-I—O’ith%'

e = op bl

The above noise model can arise in a variety of applications, such as in radar or
sonar problems where the signal to be detected is embedded in noise which is not
completely characterized. For example, a typical underwater environment consists of
uniform ambient background noise, superimposed with other sources such as impulsive
or nonstationary noise components, and possibly some additional signals which are
not of central interest. In such an environment, the sensor covariance, ¥, can be

modelled as follows. Let

Zzzk‘l'):u

Here Ty is the “known” (or adequately estimated) component of the covariance, con-
sisting of the contributions of the uniform background noise as well as measurement
uncertainty (usually taken to be i.i.d.), while X, is the “unknown” component, which
accounts fér all of the other sources of interference. The robust techniques discussed

above can be directly applied here by defining the noise uncertainty class
N={2:|2-% <e}

where € is selected sufficiently large to account for possible values of Z,,.
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Asymptotic Performance Under Noise Covariance Uncertainty

Denote the assumed and true noise covariance matrices as ¥; and X,, respectively.
The procedure for computing 7, given below, is similar to that used in the case of

signal uncertainty.
Suppose Page’s test is implemented using g;(x) = h]x, where hléE[ 'so. Define
v2uwoh;. The moment generating function equality (4.5) in this case is
1
1= [ exp{vix}(ns;) Vexp {—E(x + o) (x + so)} dx
R
1
= exp {——VTSO + -2-VT22V}

where the last expression is just the multivariate Gaussian moment generating func-

tion. Taking the log of both sides, substituting for v, and solving for wo, we get

2h:-f50
Wy = T
hl Eghl

Also noting that E{g;(z) | H1} = h¥s,, we have

7013 50, Ba) = woB{a(x) | Hy} = 2'<—flh—m%’—> (4.12)

When the noise assumption is correct (i.e., X; = ¥5), 7 = 7 as discussed previ-

ously, and then

7(91; 80, 21) = 25812;150

The performance of the nominal and robust procedures can be evaluated by replacing

¥, with Xy and X, respectively.

Example

Below is an example illustrating the procedure for determining the robust processor

under covariance uncertainty. As in the example of the previous section, the nominal
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parameters are

10 0
S = and 20 =
1 0 1

and now assume that the covariance uncertainty parameter is ¢ = 2.

° EENl

We have directly

10+ ¢ 0 12 0
Y = =
0 1+¢ 0 3
and
0.25
hL = 2;150 = _
0.33

As with the signal distortion case, the asymptotic performance can be computed
for the robust and nominal procedures. For the least favorable covariance, we

have
Ty-1 |2
| 55 2o 'S0 |
DRI Il T

7(g0; S0, 2L) = 2 = 1.770

and

7(9r; S0, 21) = 254 B7's = 2.167

As expected, the robust quickest detector outperforms the nominal version when

the covariance is least favorable.

() (3)- ()

|hz||? = (b, hp) = 0.1736

] EENZ

First, we have

Now
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and so
5 £
o, = 5 = 11.52
lhel;
Also
0.0625 0.0833
hrhy = — -
0.0833 0.11
Therefore,
10.72 0.96

$1 = Lo+ o2hphl =
0.96 2.28

The asymptotic performance for the nominal processor is
ﬁ(go, Sg, EL) = 1.890
and for the robust version is

7(gr; S0, 2r) = 2.167

In Figure 4.7, the effect of mismatch in the assumed and true covariance con-
tamination for the class N, is examined; let &' and ¢, respectively, denote these
quantities. The solid lines indicate the asymptotic performance when the nominal
procedure (¢/ = 0) and the optimal robust procedure (¢’ = ¢) are implemented. Ob-
serve that the test designed for a high uncertainty of &’ = 5 suffers a significant loss
of performance if € is small; in particular, for £ < 1, it would be better to use the
nominal procedure. The small distortion performance can be improved by instead
selecting ¢’ = 1, but this is at the expense of performance when the distortion level
is high. Thus, analogous to the signal distortion example of the previous section, we

conclude that a small amount of error in selecting ¢’ is tolerable.

4.3.3 Signal and Noise Uncertainty

In this section, we discuss the problem of designing the robust procedure for the case

when uncertainty lies in both the signal and noise covariance; that is, (s,X) € S x V.
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i3

Figure 4.7: Design tradeoffs in selection of ¢’ for the signal class V5.

In general, the robust filter hg and the least favorable pair (sg,Xy) can be obtained
by applying the three conditions of Lemma 1 in Section 4.2.

Since the classes S and A are independent, sy and ¥ can be determined sepa-
rately whenever they can be written independently of hg. The robust processor can
be obtained in two steps. First, determine the least favorable covariance ¥j,. Second,
determine the least favorable signal sy, for the nominal parameter pair (sp, Xr). For
example, for the case when (s,%) € S, x N3, the robust processor gr(x) = hEx
where

hL = (20 + (8+ 0'3)])_1 So

with A = o2 || kg ||. For this case, it is interesting to notice that the robust processor
accounts for both the signal and noise uncertainty by adding a white noise component
(proportional to A and €) to the nominal covariance ¥o.

Suppose that the parameters are assumed to be (s1,%;), but in fact they are
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(s2,23). Thus, the test that is implemented uses the processor g1(x) = h’fx, where

hlézflsl. Define véwohl. The left hand side of (4.5) is now

1 1
/k exp{vTx}(27%;) 2 exp {—-2—(x +5)T8;  (x + sz)} dx = exp {—stz + EVTEZV}
® .

Solving for the non-zero root, we get

2h:1r52
Wn =
°” hI%,h,
The other term is E{g,(z) | f} = hT’s,; therefore
l(hh 52>|2

7(91; (52, L2)) = 2m

4.4 Extensions

4.4.1 Relationship to the “Minimax Tuning” Approach

In the preceding sections, the minimax criterion was directly applied to the approxi-
mate asymptotic performance measure 77, and the optimal processor was shown to be
the minimax robust matched filter. In this section, we briefly discuss an alternative
method for deriving the robust quickest detector. It turns out that the solutions for
both problems are the same, although the approaches differ.

Suppose that we wish to implement Page’s test using the linear processor g(x) =
s’ 1x, and notice that this is just the log-likelihood ratio for testing between
N(—s,Z) and N (s,X). ¢ Thus, the test is designed assuming that (s, ) are the
true parameters. However, suppose that the actual mean vector is 6. Recall that
in Chapter 2, we defined the average sample number (ASN) of a CUSUM procedure
with initial score z to be N,(6). In [1], the following Wald approximations to the

ASN are given.
2
“oeh 14 Ap

2u2
i)

No(8) = No(8) = = , 640

5The constant multiplier has been omitted for convenience.
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where p = E[g(x) | 6] and ¢® = Var[g(x) | 8]. It is straightforward to show that
p=sT%710 and 0 =sTn s,
Define the parameter

b P sTx16
o

T (sTE15)?
Now No(8) and No(0) can be directly related as

R HOM 262 (0) — 1
2b2

.7\70(9) = No(b) =

Under Hy, b > 0 (since p > 0), and No(b) is the worst expected delay in detection
when the disorder occurs; similarly, under Hy, b < 0, and N o(b) is the mean time
between false alarms. Since the goal is to minimize the former and maximize the
latter, one would like to choose s such that b? is maximized: this is because when
b > 0, the 5% term in the denominator dominates A o(b), while when b < 0, the
exponential term in the numerator dominates. Notice that

Ta1al?
O i I [0
sT¥-1s (h,s)

th=s
which is the same as the value of 77 (less a factor of two). The minimax tuning approach
[1] is to maximize b? for the least favorable mean vector §. However, since maximizing
b? is equivalent to maximizing 7, the results from minimax robust matched filtering
can also be applied to the minimax tuning approach to obtain specific solutions for
the robust processor.

The above approach can also be extended to include the case of covariance uncer-
tainty. As in Section 4.3.2, let £; and ¥, denote the assumed and true covariances,
and suppose that the true signal, so, is known. Page’s test is then implemented using

the processor g(x) = s 7 x. This results in p = sf X7's and ¢ = sT B 8,07 s,.
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Thus,

2
b = lsgzl_lsol _ |{h1, 50) |’
N 58‘251222;150 N (hl,zghl)

h=z['s,

Again, the equivalence between maximizing b? and 7 in equation (4.12) is apparent.

4.4.2 Computation of 77 For Non-Gaussian Noise

As mentioned in Section 4.1, in some cases it may be desirable to implement a quickest
detection procedure designed using a maximum SNR criterion even if the noise is non-
Gaussian. Here, the computation of 7 which appears in the proof of Proposition 1 is

generalized to include this case.

Suppose fo(x) and f;(x) are multivariate non-Gaussian densities, and let Mo(Vv)
denote the moment generating function of fo(x). Now 7 is obtained via (4.4) and

(4.5) as before; these expressions are repeated here for convenience:
7 = wokE [g(x) | Hi] (413)

1= / VX fo(x)dx, vAwohg (4.14)

Now observe that this last expression is just the vector moment generating function

as a function of v. Therefore, wy is determined by solving the equation
MO(V) = Mo(UJOhR) =1

either directly or numerically, and then (4.13) can be determined in a straightforward

manner.
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4.5 Conclusions

In this chapter, robust quickest detection procedures were investigated for the case
of multivariate Gaussian observables with uncertain means and/or covariances. This
statistical model arises in several areas, including radar, sonar, and other multisensor
applications.

The most significant contribution establishes a formal connection between robust
quickest detection and robust matched filtering. This allows one to apply previous
results on the latter to the quickest detection problem when uncertainty in the first
and second order statistics exists. Explicit solutions for the discrete-time robust
matched filter, derived in [10], were used to separately obtain the robust quickest
detectors for uncertainty in the mean vector (signal) and noise covariance.

When the observables are Gaussian, the robust quickest detector is optimal in the
sense that the asymptotic performance measure 7 is maximized for the least favorable
mean and covariance. It was also pointed out that, when the noise is non-Gaussian,
the same techniques may be used to obtain a robust detector, where the goal is simply
to maximize the SNR over the uncertainty class. In either case, expressions for 77 were
derived which characterize the worst case performance of the robust procedure.

Simple examples were given to illustrate the design process. In some cases, such
as when the noise is uncorrelated, the design of the processor that is robust to both
signal and noise uncertainty can be carried out by separately determining the least
favorable mean and covariance. In the more general case, the solution can be obtained
by iteratively solving the set of equations in Lemma 1.

There are several interésting directions for future work. First, the robust quickest
detection problem could be further generalized in a Hilbert space setting, as is done
in [8] for the robust matched filtering problem. Second, it would be useful to obtain

the continuous time robust quickest detector. Finally, it would be useful to determine
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explicit solutions for the signal distortion problem when the noise is correlated. It was
shown that this problem can be reformulated as a quadratic programming problem,
for which two iterative approaches were mentioned. A direct solution to this problem
would be useful in both robust quickest detection and robust matched filtering, and

so this area is worthy of additional attention.
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Chapter 5

Quickest Detection in

Decentralized Decision Systems

5.1 Introduction

In recent years, there has been an increasing interest in the area of distributed, or
decentralized, detection. A distributed detection system contains two basic entities.
The first is a collection of local detectors, each of which consists of a sensor followed
by some type of decision rule. The second is a central processor, or fusion center,
which processes the local decisions and produces a final decision. The use of such
decentralized decision schemes is motivated by the reduction in channel bandwidth
that can be achieved (and hence a reduction in system cost), and also by the need
in some situations for the sensors to be separated by great distances. In addition,
a decrease in the complexity of the decision procedure at the fusion center can be
realized. However, by reducing the data locally instead of utilizing the complete data
set at the central processor, some performance is also sacrificed.

Early work in distributed detection focused on one-step procedures; that is, where
the decision is based on a single finite sample. In [16], the classical Bayesian approach

to detection theory is extended to the case of distributed detection. The optimization

136
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of the local and fusion procedures is studied in [16, 5, 13], and is extended in [7, 10]
to the case where the local decisions are correlated. More recently, the distributed
detection problem which incorporates sequential schemes at the local detectors [8]
and fusion center [17, 9, 18] have been considered.

In this chapter, we consider the problem of detecting disorders using a distributed
system. To date, there has been little work in this area. In Teneketzis [14] and
Tenecketzis and Varaiya [15], the decentralized quickest detection problem is formu-
lated by defining a Bayes cost function which penalizes false alarms before the disor-
der and large delays in detection after the disorder. The disorder is modelled using
a Markov chain, where the conditional probability of the jump occurring at time
2 + 1 given that it did not occur at time 7 is some fixed value, which is presumably
known or inferred from previous data. It is shown in [15] that, for the case where
the cost function is not separable with respect to the local decisions, the local thresh-
olds are the solutions to a set of coupled dynamic programming equations and are
time-varying. A separable cost function is also considered; this results in fixed local
thresholds, although with a longer delay in detection.

In this work, we examine several fusion rules for the case where the local detectors
simply consist of an integrator followed by a comparator with a fixed threshold. As
stated in Chapter 2, the disorder time is taken to be unknown. Several of the fusion
procedures we consider assume knowledge of the signal strengths before and after the
disorder; however, we also examine some procedures which are applicable when this
information is not available.

In Section 2, the decentralized detection problem is stated precisely, and the no-
tation used here (in addition to that of Chapter 2) is presented. In Section 3, the
three distributed procedures under consideration are derived. The first of these is the
ML optimal test, which is shown to admit a recursive form. The second is a version

of Page’s test, similar to the above test, but which requires less computation at each
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iteration. The third test is a procedure which is suitable for the important case where
the magnitude of the disorder is unknown. In Section 4, we show how the Markov
approximation approach of Chapter 2 can be modified to compute the performance of
the distributed system. In Section 5, a simple procedure for choosing the thresholds
for the local decision rules is derived based upon an asymptotic performance mea-
sure. It is shown that not only can the thresholds be easily computed, but that the
resulting performance is optimal for practical purposes; the latter point is the subject
of Section 7. In Section 6, the performance of each of the tests is computed for strong
and weak jump magnitude scenarios. Finally, in Section 8, the choice of blocklength
of the local detectors is investigated. It is shown that, in general, the more samples
used in the local decisions, the lower the performance and channel bandwidth cost;
however, in the small signal case, it is actually advantageous to use a larger blocksize

from a performance standpoint. !

5.2 Problem Statement

The decentralized detection system under consideration is shown in Figure 5.1. Here
{ze(?)}~ is the sequence of samples received by sensor £ up to time n, where £ =
1,2,...,L, and L is the total number of sensors. The sampling frequency is fixed at

fs = 1/T,. The disorder is modelled as a step change in the mean of the observables;

that is:
Hy: z4(2) = ny(3), 1=1,2,...,m—1
H: zi)=mnt)+ s, i=mm+1,...
for each sensor £ = 1,2,. .., L, where the ny(z) are samples from a zero mean Gaussian

distribution which is both spatially and temporally uncorrelated with E[n2(z)] = o7,

and m is the unknown disorder time. Note that although we have chosen a Gaussian

A preliminary version of this work has appeared in [6].
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M
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Figure 5.1: Structure of the distributed system.

noise model, the analyses which appear in subsequent sections are equally applicable
when other distributions are used.

Each local detector consists of a summation block followed by a comparator as
shown in Figure 5.1. A binary decision is made indicating whether or not the sum of
M successive samples exceeds the fixed local threshold hy. The decisions are produced
by the local detectors at a rate of one every M samples and are denoted by {u,(k)},

where

ul(k) = I{wl(k)>h¢} (51)
Mk
wi(k) = Y z3) (5.2)
F=M(k=1)+1

for £ =1,2,...,L, where Z{ A} is the indicator of the event A. Specifically, sample
24(1) is involved in decision u,(k) if and only if k = [ ], where [z] denotes the small-
est integer greater than or equal to z. Finally, global decisions {d(k)} are produced

at the fusion center based upon past and present local decisions.
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The above local detection procedure is illustrated in Figure 5.2 for a blocksize of
M = 8. Here ko denotes the block in which the disorder (at time sample m) occurs.
The joint distributions of the samples in blocks 1,2,...,ky — 1 are independent and
identically distributed, as are those of blocks kg + 1,k + 2,.... Since the sample
statistics are known before and after the disorder, the distributions of every block
except ko are also known. In block ko, the samples may have any one of M joint

distributions due to the M possible disorder times within the block. 2

block ko
blocks 1,...,ko—1 blocks ko + 1,k0+ 2, ...
mean [l.f 5
SS ———t-0o—o—o I I I I I I I I I
1 2 .. m-2 m-l o m om+l me2 L.
M=28

Figure 5.2: Operation of the local detectors.

As explained in Chapter 2, the goal of the overall procedure is to minimize the
worst expected time to detect the disorder, D, subject to a lower bound on the mean
time between false alarms, T'. Along these lines, several options for the fusion rule will
be considered, and their relative performance will be determined by computing plots
of D versus log T for each. We will again be interested in the asymptotic performance

measure

log T

n = lim

It will be shown in Section 5 that a lower bound 7 < 7 can also be obtained for

%A slightly modified version of the above detection scheme can also be used in continuous time
applications, such as in the case where multiple sensors are used to measure radar returns. The
approach for the continuous-time problem is essentially the same, and is outlined in Appendix A.
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the distributed detection problem and that this bound can be used to compute the
thresholds of the local tests.
In analyzing the various distributed detection procedures, it will be convenient to

utilize two versions of the usual stopping variable: 3
e N is the stopping time expressed in samples
e N is the stopping time expressed in blocks

Since global decisions are produced only after each block of M snapshots is processed,
it is natural to express T and D as the “expected numbers of blocks” before an alarm.
However, since a disorder can occur at any one of M time instants within block ko, we
would ultimately like T and D to be in terms of samples (i.e., number of snapshots).
This also allows us to compare procedures whose blocksizes differ.

Recall in Chapter 2, Section 4, that
T= No(ao) and D = NO(GI)

where N, (8) was the ASN of Page’s procedure with initial score z. Here we introduce
a new definition, the average block number (ABN), which describes the stopping time
of Page’s test in terms of the number of blocks rather than number of samples. The

two ABN’s of interest are:

—

EoN 2 expected number of blocks before stopping when all M samples

in every block are generated under Hp

>

E, [7\7 | ,u] expected number of blocks before stopping where:

i.) in the first block, M — p samples are generated under Hy
and p are generated under H

it.) in all subsequent blocks, all of the M samples are generated

under H;

3Throughout this chapter, a tilde indicates units of blocks.
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where the initial score 1s zero in both cases. In Appendix B, the following relationships

between the ASN’s and ABN’s are derived:

—

No(6s) = M-EoN (5.3)
No(B:) = p+ (B [N|p]-1)M (5.4)

where again p is the number of samples in block &, taken from H;. Here we will let
¢ be fixed, but later we will take into account the fact that p is actually random. To
compute the performance of the various procedures, the ABN’s will first be computed,

and then converted to units of samples via (5.3)-(5.4).

5.3 Derivation of Fusion Rules

In this section, we introduce four procedures. First, the optimal ML procedure at the
fusion center is derived, and it is shown that this test admits a recursive implementa-
tion. Second, a version of Page’s test is considered; this procedure is more practical
because it eliminates the need for performing an explicit maximization at every stage
of the test. Third, a procedure that is suitable for the important case where sq,..., st
are unknown is presented; this procedure is sometimes referred to as Hinkley’s test
[1]. Finally, the ML optimal test for the case where all of the sensor data is available
to the central processor is derived; the performance of this procedure is used as a

standard to which the distributed procedures can be compared.

5.3.1 Known Signal Case

Let u(k) = {uy(k)}=, € {0, 1} denote the local decisions for block k, and let f(u|p)
denote the distribution of u given p € {0,..., M}, where the first M — p samples of
the block are from Hy and the last p are from H;. Thus, the decisions are distributed
as f(u|p=0) for blocks 1,...,k — 1 and as f(u|p=M) for blocks ko + 1, ko +2,. ..,
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while at block ko the distribution is f(u]p=p), for some p € {1,..., M}. Each local
decision is computed according to (5.1)-(5.2). Since the observables are Gaussian, so
are the sums wy(k). Specifically, if the joint distribution for block k is f(u|p), then
wy(k) ~ NM(psg, Mo?),£=1,...,L, and Pr{uy(k) = 1} = 8(p), where

op)=1- (2r) (53)
is the power of the local fixed sample test when the disorder occurs p samples before
the end of the block, and ®(-) is the cumulative distribution function for the standard
4

normal distribution.

The distributed quickest detection problem may be alternatively stated in terms

of blocks rather than samples as follows. Define the hypotheses Ko, K,,, and K; as:
Ko: Pr{uyk)=1} = ay k=1,...,k—1
K] : Pr{uyk)=1} =04(n), k=ko, p€{1,2,... , M} (5.6)
K]_Z Pr{ul(k)=1}=ﬂl, k=k0+1,k0+2,

where for convenience we have defined aléﬂl(O) and ﬁgéﬂl(M ). Thus, when a disorder

occurs the progression Ko — K, L — K, results. ®

Let £,(u, ko) denote the likelihood ratio of the local decisions up to and including

block n assuming that the disorder occurs in block ko, where 1 < kg < n. Specifically:

k-1 f(u(k)| p=0)- f(u(ko)|p=p)- or,+1 F(u(k)| p=M)
[Tiz: f(u(k)|p=0)
flu(ko)lp=p) & f(u(k)|p=M) .
f(ll(ko) ‘p:O) keFob1 f(ll(k) |P=O) , 1< ko < (57)

The ML procedure is to maximize (5.7) over the quantities p and ko; a disorder is

L:n(#; ko) =

declared if this quantity exceeds a fixed threshold. This is also called the generalized

4If the observations are not Gaussian, then 6,(p) can be redefined accordingly.

50bserve that hypotheses Ko, Ky, and K L are dependent on the hypotheses Hy and H;. In
particular, Ko holds if and only if every sample within the block is from Hy, and similarly for K;
and H;, while K L holding implies that samples potentially come from both Hy and H;. Notice also
that K, = K; when p= M.
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likelihood ratio test (GLRT) [2]. In general, this test does not admit a recursive solu-
tion which would make the procedure more useful in real-time applications. However,
a recursive implementation does exist for the present problem, as shown below.

Since the uy(k) are simply Bernoulli random variables, we have
L
flulp) = TI(0(p))*(1 — 8u(p))' ™ (5.8)
=1

Substituting (5.8) into (5.7) and taking the log of both sides, we have

en(,u') ko) é log,Cn(,u,, ko)

_ loe]] (M)”‘(k") (ll;f;(_f))l—uz(ko)

1=1
n

L uy(k) _ 1—-uy(k)
> el (2)7 (122

k=ko+1 {=1

= 3 {utiios (2] s —wiiyen (*2427)

=1 L

+(n — ko)d + zn: }Ecml(k) (5.9)

k=ko+1 £=1

where ¢, = log [—Ell—';%] and d2 L log ( ) Define the test statistic
S.= max max £,(u,ko)

1<ko<n 1<p<M

The GLRT is then to declare a disorder at block n in case S,, > h, where the threshold
h of the test is chosen to satisfy a false alarm condition. Since y appears only in the

first term of (5.9), we define

#(u(k)) = max Z{ul(k)log( ‘(")) +(1- (k))log( : 9‘@)} (5.10)

for each block %, so that

Sp = max {¢(u(ko)) +(n—ko)d+ z": XL:clut(k)} (5.11)

1<ko sn k=ko+1 £=1
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In order to obtain the recursive version of this test, assume that S, has been

computed prior to block n + 1. Now:

Sp+1 = 1<k0<n+1 {¢(u(k0)) +(n+1—ko)d+ ’il chul(k)}

k=ko+14=1

n+l L
- max{¢(u(n+1>>, lglkoagn!¢(u(ko))+(n+1—ko)d+ 5 Zw(k)]}

k=ko+1 £=1

= ma.x{¢( (n+1)), ma.x [gﬁ(u(ko)) +(n—ko)d + Z thul k):'

k=ko+1 £=1
+d+ Z ceue(n + 1) } (5.12)
1=1
where in the last line the maximization has been computed separately over the sets

{1<ko<n} and {ko =n + 1}, and with the convention that 35 ; = 0 when j > k.

i=j
Finally, (5.11) and (5.12) together yield the recursive form of the test:

. Sn = max{S,1+gi1(u(n)),$(u(n))}, So=0

N1 = mf{n l Sn > h}

where

q(u(n))2 > cug(n) +d

=1

Here, N, is the stopping time of the test and g; is the log-likelihood ratio for testing
K, versus K;. Note that the stopping time is expressed in blocks; the conversion
to samples is done using (5.3)-(5.4). A block diagram of this procedure is shown in
Figure 5.3.

One drawback of the optimal test is the need to compute ¢(u(k)) for each block.
Since this requires a maximization over a potentially large number of points, we are
motivated to consider the following procedure:

Sn = max{S -1+ gz(u(n)),O}, So =0
Pz :

N, = inf{n| S, > h}
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9(°) ’Q‘/‘

Figure 5.3: Structure of the ML optimal procedure.

g2() max{-, 0}

Figure 5.4: Structure of the suboptimal procedure.
where g, = g; and ¢(-) is replaced by zero. The structure of this test is shown in
Figure 5.4. This is just the familiar Page procedure of Chapter 2. Unlike procedure
P11, P, does not explicitly incorporate the information for the change block into the
global decision. Note that P; can be essentially viewed as a Page procedure with a
lower boundary which is dependent on the data (the lower boundary is zero for P,).
Another interesting point is that if it were known a priori that the disorder occurred
at the beginning of a block, i.e. g = M, P, would be the optimal test not only in
the ML sense, but also in the sense of minimizing D for any fixed T, the criterion of

Lorden which was discussed in Chapter 2.

5.3.2 Unknown Signal Case

In the above procedures, the jump magnitudes of the signals at the disorder time are
taken to be known. However, in some situations, such as when the location of the

phenomenon causing the disorder is not known, the resulting signal strengths will




Chapter 5: Quickest Detection in Decentralized Decision Systems 147

also not be known. This motivates us to consider an additional version of Page’s
test suitable for problems where the jump magnitude is not known. The approach is
similar to the case where the jumps {s;}%; are known, except that now we assume
that s, > &, for £ = 1,..., L, where {8}, is a set of minimum jump magnitudes.
The derivations in Section 5.3.1 are then carried out assuming s; = 6;. Thus, this
test is designed for the disorder of minimum magnitude, although the monotonicity
of the likelihood ratio means that the procedure will also react to larger jumps.
First, we assume without loss of generality that §, = . This implies 8,(p) = 0(p),
ay = a, and B; = 8. Not only does this simplify the calculations, but it may also be a
realistic assumption when little is known about the origin of the disturbance. Define

v(k) = S, us(k). The log-likelihood ratio in (5.9) now reduces to

La(p, ko) = v(ko)log (@) + (L —v(ko))log (lii_"(_oi‘))

+(n—ko)d+c Y v(k) (5.13)
k=ko+1

where c2 log [gg—:—;%] and déLlog (-11{—2) Following the same procedure as in (5.12)
and again neglecting ¢(-), we eventually arrive at a sequential procedure similar to
P, for detecting changes of unknown signal strength:

S, = max{S,-1+g3(v(n)),0}, So=0

Ps: _

N; = inf{n|S, > h}
where gz(v(n)) = cv(n) + d is the log-likelihood ratio for testing K; versus Ko, where
now K; denotes the minimum jump hypothesis (i.e., sy = §, V£). We refer to this as
Hinkley’s test. The structure of Pj is similar to that of P, (Figure 5.4), except that
now the vector of local decisions u is replaced by the sum v. Notice that for this test,
the fact that the minimum jump is é for each sensor means that all measurements

are equally weighted. Therefore, we are able to simply consider the sum of the sensor

measurements for each snapshot.
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5.3.3 Non-Distributed Case

In this case, all of the data is available at the fusion center (i.e., no local decisions

are made). The ML optimal test, derived in Appendix C, is:

Sp = max{S,_1+2,,0}, So=0
Po :
No = inf{n| S, > h}

where
A L 2 . 1 2
zj:z:a[ {31(7)31—551}
=1

This is the optimal procedure in terms of the criterion of Lorden (cf. Chapter 2).
To see this, note that this procedure tests for a change in the mean of the univariate

random variable z; from E(z; | Hy) to E(z; | Hy), where

[

1& s

E(zj | H) = —E(z | Ho) =53 =

=1 Ul
It will be shown that, while this test requires the largest channel bandwidth, it also
yields the best performance because the information is not reduced locally. It is

therefore included as a benchmark to which the other procedures are compared.

5.4 Performance Computation

For each of procedures Pg - P3, performance curves are generated by computing the
pair (T, D) over a range of uniformly spaced values of h. For the non-distributed
procedure (Po), the Markov approximation method described in Chapter 2, Section
4 is used. A modified version of this method can also be used for the distributed
procedures, as described below.

Recall from Chapter 2 that r;(n) was defined as the probability of reaching stage
n under hypothesis H;, and that the ASN could be expressed in terms of {r;(n)}2,.
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For the distributed procedures it is useful to redefine 7;(n) in terms of blocks; that is,
a “stage” in this case is just a block. Specifically, 7o(n) is the probability of reaching
block n when the disorder never occurs, and 71(n;p) is the probability when the
disorder occurs at sample time p in the first block.

The Markov approximation technique can be used as in Chapter 2 with one mod-
ification: the statistics of block ko (the change block) differ from those subsequent
blocks. Therefore, it is necessary to compute separate probability transition matrices

for each of the three hypotheses Ky, K!, and K;; denote these as Qg, Q,, and Q,,

n

respectively, along with submatrices Ro, R., and R;. ® At each stage, there are 2°
possible input vectors u. Thus, the Q’s can be determined in the following way. Define
the states ag, . . ., &p and a* as in Chapter 2, and let bin(j) denote the binary version of
integer j: for example, for L = 4 sensors, bin(13) = [1 1 0 1]7. Let ¢(-,-) be a generic
mapping for incrementing the test statistic; namely, if {o, (G € {ao,..., ap, &*}, then
¢ = ¢({o, u) indicates that input u produces the state transition (o — (1. Now Q

can be determined using the following procedure:
1. Set Q,;,j = 0, V’I,,]
2. Fori=0,1,...,pand j =0,1,...,20 —1:

(a) u = bin(j), p. = Pr{u}

(b) k = {, where £ is such that a; = ¢(a;, u), with the convention that k =p 41 if

a* = (P(aia ll)

(c) Set Qi « Qi + pu

3. Set Qpy1p+1 =1

5The subscript “c” stands for “change”.
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Step 3 reflects the fact that state p + 1 is a terminal state.
The ABN’s are determined in the same manner as are the ASN’s in Chapter 2.

Here, the expected stopping times are

EoN = Z (Fo(n) — Fo(n + 1)) = > 7o(n) (5.14)
n=1 n=1
and similarly
AR SET (519
n=l

For the false alarm case, we have
Fo(n; p) = TRy, n=1,2,...
which, when substituted into (5.14), results in
EoN =7, (I-Ro)™'1 (5.16)

Notice that (5.16) is identical to (2.14) in Chapter 2. 7
The computation of E; [ﬁ | p] is done in a similar manner, except that we must
now also take the contribution of the change block into account. The transition

matrix for this case is Q. for the first stage and Q; for subsequent stages. Thus

m(Lp) = 1
71(2pn) = mR.1
71(3;p) = mR.R;1 (5.17)

fi(n;p) = mRRTL
Therefore, (5.15) together with (5.17) yields

E N4 = 143 mRRI1

n=2

"Recall that 7} is a truncated version of the state probability vector.
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= 14+ mR. (E R?) 1

n=0
= 14+nR.(I-Ry)'1 (5.18)
Finally, the quantities in (5.16) and (5.18) are converted into units of samples via

(5.3)-(5.4), which results in:

No(6o) = Mrh(I-Re)™'1 (5.19)
No(6) = p+ MR (I-R;)7'1 (5.20)

A different R. is computed for each y = 1,2,..., M. However, observe that the
product 7R, simply picks off the first row of R.; therefore, for each p, it is necessary

only to compute the transition probabilities out of the initial state (ap).

5.5 Choosing the Local Thresholds

The asymptotic performance measure, 7, was defined in Chapter 2. It was seen that
71’ is the slope of the plot of D versus logT as T — o0, and therefore minimizing
D corresponds‘ (asymptotically) to maximizing 7. It was also shown that the lower
bound 7 < 7 is useful because, for large T, it enables us to upper bound the worst
expected delay as

: log T

D<—
1

and also it is not difficult to compute. The original derivation of 7] appears in [4].

7 and 7 can be defined in the same manner for the distributed detection case with
the caveat that the lower bound 7 differs slightly for this problem. It turns out that
for the ML optimal procedure, the lower bound is

- 1
=3 woE1[g:1(u)] (5.21)
where wy satisfies the moment generating function equality Eqlexp{wog:(u)}] = 1. -

The derivation of this bound is somewhat messy, and can be found in Appendix D.
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It is also shown in this appendix that # is the same for both P; and P,. Thus,
the optimal and suboptimal procedures are asymptotically equivalent. This means
that for large values of T, there will be little difference in performance between the
two procedures. The performance calculations in the next section corroborate this.
Below, it is shown that 7 can be useful in determining the local thresholds so as to
optimize the asymptotic performance of the overall procedure.

Let hye = [h1,hy,...,hs] denote the vector of fixed local thresholds. Ideally,
one would like to optimize the distributed system over all possible hj,. € §R§’_ In
Chapter 2, we stated the objective of quickest detection: to minimize D subject to a
lower bound on 7. Using (5.19) and (5.20), this optimization problem can be written

explicitly as:

minimize p~+ MniR.(I— Rl)_1 1 over hy,. € §Rf’}_

subject to Mmy (X — Bo)_1 1>c¢c

where ¢ is a positive constant. This approach is difficult to implement for several
reasons. The first reason is the existence of the change block. Here, the probability
6,4(1) of locally detecting the change at sensor £ is dependent on p. Since p is unknown,
it is not possible to select an optimum threshold a priori. ® Another difficulty is
that the optimal hj, is dependent on the desired mean time between false alarms,
or similarly, on the desired global threshold A. One can see this by noting that a
procedure with a higher A will produce an alarm later than the same one with a lower
h; thus, the contribution of the change block to the final decision is more significant for
lower h, and so in this case one would like to choose the local thresholds to take fuller
advantage of the information extracted from this block. It is also not clear whether a
unique solution to this nonlinear optimization problem exists. Since T is a function of

both hy,. and A, fixing T' does not lead to a fixed h, so h is also dependent on h;,.. One

80ne might consider assigning a uniform distribution to the arrival time within the change block
and averaging over all possible .
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might consider an adaptive search to maximize the performance over all h;,. € ?Rf’_
Unfortunately, the relatively long time required to compute the performance even for
fixed thresholds would be prohibitive in an iterative scheme.

A simpler method for selecting the local thresholds based on the asymptotic lower
bound 7 in (5.21) is proposed here. The goal is to maximize 7 over hy,. € §R£ When
g is the log-likelihood ratio for choosing between Ky and K7, direct evaluation of the
moment generating function identity [4] yields wop = 1. Since M is a constant, the
goal is then

max By [g(u)] = maxE; LXL) {ullog (i) + (1 — ug)log (1 ﬁj) H (5.22)

loc loc =1

Since the local decisions are independent, the expectation can be applied termwise.

Thus,

mecBilo(w)] = max3 By {us () + —ﬂl>}

loc loe l— 1 -

= rlrllaxsz(ﬁz, oy)

loec =1

= Z max Dy(By, o)

=1
where we note that E;{u,] = B, and Ds(a,b) = alog(£) + (1 — a)log(3=%) is just
the binary discrimination function from information theory [3]. Thus, the problem
of globally maximizing the asymptotic lower bound amounts to selecting the local
thresholds to maximize the binary discrimination for each sensor.

The local threshold hy is related to oy and By for £ =1,2,..., L via the equations:

a oo;ex {—— . Tz}dT =1-9 he
¢ he V2rMo P\ 2Mo? - VMo
g 1 1 2} hy — psy
- — (r— dr = 1 & | K3t
P ke V21 Mo exp{ 2Mo? N ( vMo
The function Dy(By(he), ce(he)) has a unique maximum over hy € [0, 0], so the op-

timal threshold is easy to compute. The explicit solution satisfies a transcendental
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equation; therefore, we instead use a binary search procedure allowing us to get ar-
bitrarily close to the optimal threshold. The merits of using the above scheme for
choosing the local thresholds will be evaluated in Section 7 via a sensitivity analysis.

As a sidenote, it is not difficult to show that regardless of the choice of hy,, the
optimal non-distributed procedure is always asymptotically better than its distributed
counterpart. Let 74, and 7, denote the asymptotic performances for the distributed
and non-distributed procedures, respectively. Because the log-likelihood ratio is used

for each case, the lower bounds are tight. It is shown in Appendix C that

£
Tnon = 53
= 207
Also, from the above discussion, when the optimum local thresholds are used:
Ndis = Ndis = —]l_/f Ema-XDb B, ar) (5.23)
=1

The equality in (5.23) is strict since the log-likelihood ratio is used at the fusion center
[4]. Now Corollary 4.4.2 in [3] provides the following bound:

Dy(Be, aq) < Mf(qy),% ) (5.24)

where q(l) and q(l) are the densities of sample z4(n) under hypotheses Hy and Hj,

respectively, and

(40, 4® 4(=) ) 40 54
I(q; 7‘10 )= /log (t) (z)dz = -2—&—[2— (5.25)

is the Kullback-Leibler divergence. Combmmg (5.23)—(5.25), we have

2 L

52
=2 5

Ndis < ———Zma.xM
=1 = 20y

- M 20‘l

and thus %non > Nais-
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5.6 Examples of the Performance Computations

In this section, we illustrate the performance of procedures Po-P; for a distributed
detection system with L = 4 sensors. The sample noise at each sensor is standard

Gaussian. Two cases will be considered:

post-disorder signal strength, dB

case =1 £=2 (=3 {=4
“strong signal” 0 -3 —6 -10
“weak signal” -20 -23 -26 -30

For the distributed procedures, the thresholds for the local detectors are obtained

using the method of Section 4.

5.6.1 Procedures Where the Jump Magnitudes Are Known

In Figure 5.5, a plot of D vs. T for the ML optimal procedure is shown for the
blocklength M = 20 and several values of u. This illustrates the effect of the disorder
arrival time on the expected delay. The average and worst-case performance is also
shown. To compute the former, the average expected delay over all p for each T is
determined (i.e., assign a uniform prior probability to u); for the latter, the maximum
expected delay over p is determined. We observe that D is lower when the disorder
occurs either very early or very late in the block. Since p is unknown, only the average
and worst-case performance will be considered from here on.

The accuracy of all of the procedures was verified by performing Monte Carlo sim-
ulations. ° Each of the procedures was implemented on a MasPar massively parallel
computer, enabling us to perform multiple runs simultaneously; in this case, each of

the 4096 processors executed a single run. In Figure 5.5, the circles are the values

9The simulated values are shown explicitly only in Figure 5.5. These values are not shown in the
other graphs so that the detail remains clear where there are several plots on one graph.




Chapter 5: Quickest Detection in Decentralized Decision Systems 156

generated for h = 2,4,6,...,14 in this manner. One can see the excellent agreement
between the simulated and computed performance throughout. The asterisks in Fig-
ure 5.5 show the computed values for A = 16,18, and 20; simulated values are not
shown for these points due to the large computing time required to generate false
alarms in this range.

The average and worst-case performance of the ML optimal, Page, and non-
distributed procedures are compared for the strong signal case in Figure 5.6. The
performance of the non-distributed procedure is uniformly better than that of the
other procedures, as expected; in addition, the advantage of utilizing all of the sensor
data at the central processor increases linearly in the log of T. It is interesting to
note that both the average and worst-case performances of the ML optimal and Page
procedures are virtually identical, with the ML optimal winning out only by a small
amount in some places. We also see that the performance degrades with increasing
blocksize, and the best choice is M = 1. This reflects the tradeoff between using
large enough M so that the local detectors are sufficiently powerful and keeping M
small so that the detection will be quick. In this case, the disorder has a large enough
magnitude that only one sample is required for the local detectors.

The same computations are shown for the weak signal case in Figure 5.7. Again,
the non-distributed procedure is the best of the three, and the average and worst-case
performance for the ML optimal and Page procedures are nearly the same. In general,
the expected delays are much larger for the small-signal case; this is also expected,
since weaker signals will lead to local detectors with lower power. A major difference
between the weak and strong signal cases is the sensitivity of the performance with
respect to blocksize. In Figure 5.6, we see that the choice of M = 10 yields an
expected delay that differs from M = 1 by about 5 samples, while for M = 20, this
difference 1s closer to 10 samples, a significant percentage of the delay for M = 1.

However, for the case shown in Figure 5.7, the performance for M = 500 is very
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Figure 5.5: Performance of the ML optimal procedure for different u. L = 4, M = 20,
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Figure 5.7: Average and worst case pefformance of ML optimal, Page, and non-distributed
procedures. L = 4, weak signal case.

close to that for M = 1. In addition, the difference in expected delay for these two
cases diminishes as T increases. Therefore, the smaller the jump magnitude, the less
critical the choice of the blocksize is, though in either case an M which is too large

will result in significant performance degradation.

5.6.2 Procedures Where the Jump Magnitudes Are Un-
known

We now compute the performance of Hinkley’s test and compare it to that of the
ML optimal and non-distributed tests (i.e., procedures where the jump magnitudes
are known). The jump magnitudes are those of the strong signal case given in the
previous section. For Hinkley’s test, we consider two magnitudes for the minimum

jump: SNR,.;, = —10 and — 20 dB. In other words, we determine the parameters
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for Page’s tests assuming that the disorder is of magnitude SNR ;.

The results are shown in Figure 5.8. Here, the average performance is computed
(the results are similar when the worst-case performance is used). One can see im-
mediately the benefit of knowing the actual signal strength. The performance of the
Hinkley procedures diverges from that of the ML optimal procedure as T increases,
regardless of the choice of M. Also, the performance for SNRyin = —10 dB exceeds
that of SNRuin = —20 dB, more so with larger . This reflects the fact that the
better an idea one has about the jump magnitude, the better the performance that
can be achieved. Although not included here, a similar comparison was done for the

weak-signal scenario, and the results were analogous to the above.

100 —————————
Hinkley, M = 20 : Hinkley, M = 20 i
SNRymin i —20dB i SNRmiyn = —10dB :

\ y
. /
80 K |
Hinkley, M=1 :
SNRmin = —20dB
o 60 ,// |
2 Hinkley, M =1 : .
g SNR, i = —10dBX -
a ST
177}
O 40t ]
20 P |
;’// S - optimal, M = 20
- non-distributed  optimal, M =1
b z R 0 R ) 12
10 10 10 10 10 10 o

T, samples

Figure 5.8: Average performance of Hinkley procedure with SNR,,;, = —10 and — 20 dB,
the ML optimal procedure, and the non-distributed procedure. L = 4, strong signal case.
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5.7 Sensitivity of Performance To Variation in

the Local Thresholds

In Section 4.4, a procedure for determining the thresholds of the local detectors based
upon the lower bound of the asymptotic performance measure 7 was presented. How-
ever, it is not clear as to whether the resulting choice of thresholds is near the optimal
for two reasons: (1) 7 is an asymptotic performance measure, so the performance in
general may be inadequate, and (2) the tightness of the lower bound was not consid-
ered. This motivates us to perform the following sensitivity analysis.

Let h;,. denote the L—dimensional vector of local thresholds obtained via the
method of Section 4.4, and let hy, denote a multiplicative perturbation of hy,. such
that

hyer = c-hye, c€ Ry
Thus, by varying the perturbation parameter ¢ and computing the performance using
h,.- as the local thresholds, we can determine whether hy,. (i.e., ¢ = 1) is a good
choice.

In Figure 5.9, we compute the average ML optimal performance for N = 10 and
values of ¢ ranging from 0.5 to 1.5. We see that asymptotically as T increases, c = 1
is the best choice. We also note that a change of plus or minus ten percent does not
significantly affect the performance. From this, we conclude that the methodology of

Section 4.4 is reasonable.

In Figure 5.10, the analysis is repeated for the weak signal case where N = 100.
Again, we see that the best performance occurs when ¢ = 1. However, there is little
difference in performance even for variations in hy,. of as much as fifty percent. In

other words, the performance is far less sensitive to the choice of local thresholds

when the jump magnitudes are smaller.
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Figure 5.9: Sensitivity of average performance of the ML optimal procedure to perturba-
tions of the local thresholds. M = 10, strong signal case.
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Figure 5.10: Sensitivity of average performance of the ML optimal procedure to perturba-
tions of the local thresholds. M = 100, weak signal case.
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5.8 Block Length Effects

In this section, we address the question: For a particular distributed system, what
is the best choice for the blocksize M? We assume that the number of sensors L is
fixed and known, and that the designer has a specified minimum desired T'.

There are two considerations in the choice of M. The first is the expected delay
for the chosen value of T; in other words, the expected delay can be parameter-
ized as D(T, M). We have seen in the previous section that the performance varies
significantly depending on the blocksize.

The second issue is the cost C(M) associated with M. Since the sampling rate
f, is fixed, the smaller the value of M, the more frequently the local decisions are
sent to the fusion center, and thus the higher the bandwidth required for each of
the channels. Each local decision is represented by a single bit, and so the cost is

proportional to the bit rate. Thus:
o) = o2 (5.26)
M

where C, is a constant with units “cost per unit bit rate” which reflects the relative
cost of increasing the channel bandwidth. For example, a system with M =1 costs
twice as much as a system with M = 2, which costs twice again as much as with
M = 4; i.e. the cost is linearly proportional to the inverse of the blocksize. Note,
however, that one is not restricted to costs of the form (5.26); on the contrary, a
C(M) which more accurately models the cost structure for a particular system may
be substituted. Nonetheless, (5.26) is used in this case without loss of generality.
The best choice of M is a compromise between the desire to quickly detect a
disorder and the need to minimize the system cost. To this end, we propose the
following design methodology. For procedure P;, ¢ = 1,2,3, define the function

RAT* M) 2 gip ZATM)

BR Doy 1
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R:(T*, M) is a relative performance measure which reflects the sacrifice in perfor-
mance for using procedure P; instead of the non-distributed procedure for the spec-
ified minimum allowable mean time between false alarms T and block size M. The
plot of D vs. log T for the non-distributed case is continuous; therefore, any operat-
ing point T* is achievable using P,. However, the fact that the set of possible local
decisions at any time is a discrete finite set (of cardinality 2¥) means that a designer
may not be able to design a test operating at exactly 7*. 1° Therefore, the delay
corresponding to the smallest T > T* is used.

The overall desirability of different block lengths is determined by evaluating both
the relative performance function and the cost function over a range of M, and plot-
ting R:(T*, M) versus C(M) for each procedure P;,7 = 1,2,3. This allows a system
designer to decide whether an incremental cost increase will produce a worthwhile
improvement in performance.

In Fi-gure 5.11, the above methodology is illustrated for the strong signal scenario
considered previously. Here R;(T*, M) is plotted versus C(M) for : = 1,2, and 3,
where for simplicity we take Co = 1 and f, = 1. The plots are generated for T* = 10°
and T* = 10'°. We see that in general, the relative performance deteriorates as the
blocklength M increases; that is, as the system cost decreases. For the ML optimal
procedure, the best performance is achieved for M = 1; of course, this is also the
most expensive alternative. However, a designer might be willing to sacrifice some
performance in order to reduce the overall cost. In such cases, the plot of relative
performance versus cost makes it easier to select a compromise. For example, one
can see that little is sacrificed by using M = 10 rather than M = 1, and so this is
an attractive alternative. The aforementioned fact that the ML optimal ( = 1) and
Page (2 = 2) procedures exhibit nearly identical performance is evident here as well.

In Figure 5.12, the relative performance is shown for the weak signal case. Again

1°0ne might consider using a randomized test to exactly achieve T*.
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we see that for sufficiently large M, the performance rapidly decreases. However,
unlike in the strong signal case, the best choice of blocksize does not correspond to
the system with the highest cost. In fact, the best choice for M 1s closer to 100,
and significant performance degradation doesn’t occur until M is larger than 500.
Another observation is that at M = 100, it appears that the performance of the Page
procedure is better than that of the ML optimal, yet this 1s not so. This appearance
is a consequence of the fact that we cannot design a test for ezactly an arbitrary T,
as we mentioned earlier; in this instance, the smallest T > T™* for the Page procedure
was closer to T* than the corresponding T for the ML optimal procedure, which led
to Ra(T*, M) > Ro(T*, M).

One question arises from the above observations: Why is it better to use larger
blocksizes when detecting small signals, even though the goal is quickest detection?
The optimal procedure for detecting one mean versus another in Gaussian noise given
M observables is to compare the sum of the samples to a threshold. If the mean is
large, it will require relatively few samples in order to get a test of reasonable power.
For the strong signal case we considered, M = 1 was sufficiently large to enable
local tests to make decisions with high accuracy. Although a higher M would have
produced even more powerful local tests, this increase is more than offset by the
additional delay in detection incurred. For weaker signals, M must be larger in order
to produce local tests with sufficiently high power. To clarify this point, suppose that
M =1 is chosen. The overall procedure then amounts to hard-limiting the sensor
measurements and using the outcomes in a sequential procedure at the fusion center,
a well-known non-parametric procedure. The fact that M = 1 is the best choice in
Figure 5.11 shows that for strong signals, it is not necessary to process the local data
in an optimal fashion (i.e., summing the samples) in order to get good performance.
On the other hand, Figure 5.12 illustrates that for weaker signals, it is necessary to

involve many samples in each local decision in order to achieve reasonable power.
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This tradeoff has been explored previously in the context of quickest detection for

scalar (non-distributed) signals [12].

5.9 Conclusions

In this chapter, we examined the quickest distributed detection problem. The local
detection procedure was to simply compare the sum of successive blocks of sensor data
to a threshold, and the disorder time was assumed unknown. Several alternatives for
the fusion procedure were considered. For the case when the magnitudes of the jumps
are known, we derived the ML optimal procedure along with a suboptimal version
which requires less computation to implement. When the magnitudes are unknown,
a similar procedure designed to react to a nominal jump is used. Each of these
procedures were shown to have recursive implementations.

The performance of the above procedures was computed by modelling the test
statistics as a Markov process, allowing us to get explicit expressions for the average
sample numbers before and after the disorder. Analytical expressions for the per-
formance are important since they allow the system designer access to alternatives
without extensive Monte Carlo simulations; in this case, the analytic computations
were verified via simulation. It was shown that the performances of the ML optimal
and suboptimal procedures are asymptotically equivalent, and so in practice the latter
test might be the better alternative.

A simple method for choosing the thresholds of the local detectors based upon
a lower bound on the asymptotic performance measure was introduced. Sensitivity
analysis reveals that the procedure leads to near optimal performance. This eliminates
the necessity of solving a set of coupled nonlinear equations to obtain the optimal
threshold settings, which is the common situation in decentralized detection problems.

Finally, a methodology was developed to determine the best choice of blocklength
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for the local tests. This involved a tradeoff between decision delay and increased
system bandwidth (i.e., communication cost). For the strong signal case, the results
were as expected: a decrease in communication cost results in a deterioration in
performance. Surprisingly, for the weak signal case, there is a range where lowering
the communication cost results in an improvement in performance.

There are several interesting directions for future work. First, although we used
simple summing devices at the local detectors, the analysis could be easily extended
to include other types of detection schemes. For example, if the signal were time
varying, two options might be viable: for coherent detection, an estimator-correlator
could be used, while for noncoherent detection, a generalized energy detector might
be appropriate. Another issue is the assumption of the independence of the samples.
If the samples are correlated, then so will be the local decisions. For this case, one
approach would be to design Page’s test using the conditional densities (conditioned
on the past decisions) rather than the marginals; however, if the blocksize is large,
the decisions may only be slightly correlated, and so such a modification might not
be necessary. Finally, it would be useful to develop a procedure for estimating the
location of a disorder using a distributed detection scheme. This could be useful, for
instance, in the case where distributed sensors monitor seismic activity, and upon

detecting an earthquake, one wishes to locate the epicenter.
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5.10 Appendices

5.10.A Extension to the Continuous Time Case

Here we present the continuous time analogue to the distributed detection problem.

The observables at each sensor are typically modelled using a stochastic differential

equation [4, 19]:
d:l:l(t) = s¢° 'u,(t — to)dt +&- dwl(t), £=1,2,...,L

where wy(t) is a Wiener process at sensor £ scaled by &, u(-) is the unit step function,
to is the disorder time, and s; is the drift at sensor { resulting from the disorder.
In the discrete time case, the local decisions are produced by comparing sums of
N successive samples to a threshold. In the present case, the summation is replaced
by the integral of the sensor measurements over a time window of length NT,. In
particular, uy(k) (the kth decision at sensor £) is
walk) = 1, we(k) > hy

0, otherwise

where
k kNTs d
= t)di
wl( ) /;k-—l)NT; wl( )

Let & = ;——%-:, and let ko and g denote the change block and the disorder time
within block ko as before. In the continuous case, the disorder may occur at any time,
not just at discrete sample instants; thus p = ko NT, — %o € [(ko—1)NT,, koNT,]. Now
the distribution of the local decisions is exactly that of (5.5)-(5.6), with the exception

that y now takes on continuous rather than discrete values. This means that all of the

techniques developed for the discrete time case can also be implemented in continuous

time.
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5.10.B Conversion From Blocks To Samples

Let N denote the stopping time in terms of blocks, respectively, where a block consists
of M samples. Let p;(k) denote the probability that the alarm occurs at block k£ under
H;, and let p denote the number of samples taken from H; present in the change
block ko. ' Since global decisions are only made at the ends of a block (i.e.- every

M samples), under H, we have

k=1
= M-EoN

Under H,, detecting the delay at block k; corresponds to a delay of u samples. For

each additional block before the alarm, M additional samples are required. Therefore:

No(81) = ppi(1)+ (g + M)pi(2) + (6 + 2M)ps(3) + . ..
= Y[k M= DIn(E)

= Ei[p+M©E -1) |4
= ;L+M(E1[N|p]—1)

where the last equality results from the linearity of the conditional expectation.

1Notice that py(k) is a function of of p.
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5.10.C Derivation of the Optimal Non-Distributed Proce-
dure

Here we derive the optimal test when all of the data is available at the central pro-
cessor. For convenience, we adopt the following vector notation:

s = [s1,80,...,50]"

nG) = [ni(i),n2(z), ..., nu(@)]"
. _ | n@), i=1,2,...,m—1

© = {n(i)—}—s, t=mm+1,...

where m is the change time, and x(z) is a snapshot of the sensor data at sample time

1. Let the distribution of n(z) be
1 L/2 L 1
p(n(3)) = (5;) 5% exp (—EnT(z’)Z‘.‘ln(i)> Vi (C.1)
where & = diag(c?,02,...,0%). The log-likelihood ratio for a disorder occurring at

sample m within a block of n samples is
21 p(x(3)) [T P(x(5) — 5)

L({x(1)}yim) = log ™, p(x(3))

— Zl og AXAI) —8) (x(]) s) (C.2)

j=m p(x(7))
Substituting (C.1) into (C.2), we have

L({xDYm) = 3 {F5x() - gsTWS}

M: §M=

L . 1,
ZO' {a:;(j)sl—— Esl}
7 =1

= _Z z; (C.3)

where the definition of 2; is obvious. The likelihood ratio is now maximized over all

1]
’s

possible change times, resulting in the test:

n

Sn - 11<nma§n ZZ] (04)

J=m




Chapter 5: Quickest Detection in Decentralized Decision Systems 171

N = inf{n|S, > h} (C.5)

This is simply the univariate Page’s test, and it is shown in [11] that the recursive

test

S, = max{Sn_1 + 2,0}
N = inf{n| S, > h}

is equivalent to (C.4)-(C.5).

The asymptotic performance measure can now be computed. Since the log-
likelihood ratio is used to process the data, the lower bound 7 < 7 is tight [4].
Therefore,

~ L St
n=17=FHz= ; %2

Therefore, the asymptotic performance is proportional to the collective signal to noise

ratios at each of the sensors.

5.10.D Computation of 77 for the Distributed Procedures

Here, it is shown that 7 is a valid lower bound on the asymptotic performance measure
7 for the distributed detection case. Throughout, N and N denote stopping times in
terms of blocks and samples, respectively.

Consider the following hypothesis testing problem. Let u(n) = [ui(n),...,ur(n)] €
{0,1}* denote the snapshot of local decisions for block n such that

ay, under hypothesis K
Pr{ut(n) =1} = ¢ Hnder Aypornesis Lo , £=1,2,...,L (D.l)
B¢, under hypothesis K;

where at the disorder time the transition K, — K; occurs. Define the function

g:{0,1}Y — R. Page’s procedure for problem (D.1) is:

R, = max{R,_;+g(u(n)),0}, Ro=0
Pr:

—

Nr = inf{n| R, > h}




Chapter 5: Quickest Detection in Decentralized Decision Systems 172

This test is optimal when g is the log-likelihood ratio for testing Ko vs. K;. One
may recognize that problem (D.1) is the same as (5.6) for the case when the disorder
occurs at the beginning of a block, i.e. p = M (so K, = K;). In [4], the following
bounds on ABN are derived:

~ h+~
E;Ng < r[g(u—)] (D.2)
EoNg > exp{hw} (D.3)

where v > 0 is a finite constant and wp satisfies the moment generating function
identity under Hp, Eolexp{wog(u)}] = 1. Since g is the log-likelihood ratio, we = 1.
12 Since, here, the disorder is assumed to occur only at the beginning of a block
(# = M), the bounds on ASN are simply given by (D.2) - (D.3) multiplied by M. Of
course, we are actually interested in the performance for arbitrary p.
We now derive ASN bounds that are applicable for any p € {1,2,..., M} (ie.

the problem in (5.6)) for procedures of the form

Sn = max{Sy1+g(u(n)),¥(u(n))}, So=0

Ps : _

Ns = inf{n|S, > h}
where ¥ € R, is bounded. Pgs is a generic procedure which includes the ML optimal
procedure P; and the suboptimal procedure P, (the latter, by letting ¢ = 0). Let
Ts and Ds denote the expected stopping times in samples for Ps under H, and Hj,

respectively.

Proposition 5:

b+
Ds=M (1 TE [g(u)]) (D-4)

12Further details regarding 7 and wq are given in [4]. However, for the present purposes all
necessary information is contained in this appendix.
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Proof:
Consider the test

0, n=1
0 - {

PU : ma.x{U -1+ g(u(n))70}’ n —= 2737 s

Ny = inf{n|U, >k}
This procedure differs from Ps in that: 4.) the first block of data (stage n = 1) is
neglected, and 4.) ¢(-) is replaced by 0. At first, it may be unclear as to why Py was
chosen. There are two reasons for this choice. First, by ignoring the first block (of
which p samples are from H;), we have constructed a procedure that is independent
of p; this fact, along with replacing ¢(-) by 0, will enable us to relate the expected
stopping time of Ps to the bound in (D.2). Second, the ABN of Py upper bounds
that of Ps. To see this, fix a particular realization of {u(n)}32,. By comparing the
test statistics termwise, it is clear that U, < S, for all n, and since this is true for

any realization
E:Ns < E; Ny (D-5)

That is, it will take U, longer to reach the boundary h than it will S,. Also, since

Py is independent of p,
E:i[Ny | p = M) = E, Ny (D.6)

Now when p = M, the ezpected sample path of U, is the same as that of R, delayed
(shifted to the right) by one unit. Thus, the expected stopping time of Py satisfies:
Ba[No |p=M]=1+E[Np|p=M (D.7)
Combining (D.5)-(D.7) and using the upper bound in (D.2), we have
E;Ns < 1+E[Ng|p=M)]
b+~

< 1+ —_—El[g(u)] (D.8)
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Finally, using (5.4) to convert into units of samples along with (D.8):

Ds

No(6,)

(EyNs — DM + p
Pty
Eq[g(u)]

(1 )

IA

M- +u

fA

Proposition 6: There exists some finite p > 0 such that for h > p: 3
Ts > Mexp{(h— oo} (0.9)

Proof:
Define the procedure

Vi = max{Voi+g(u(n)),p}, Vo=p

Py :

Ny = inf{n|V, > h}

for some h > p where

and p < oo since ¥ is bounded. For any fixed sample realization of {u(n)}2,,
Sn < Vi, Vn. Therefore
EoNs > EoNy (D.10)

Now consider the procedure

W, = max{W,-1 +g(u(n)),0}, Wy=0
Pw :
Nw = inf{n|S,>h—p}

13Note that the restriction & > p will not pose a problem, since we will eventually be taking the
limit as h — oo.
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This is identical to procedure Py except that the lower boundary is shifted from p to
0, and the upper boundary is shifted from h to h — p. It is not difficult to see that
for a particular sample path W,, = V,, — p, Vn. Therefore,

EoNy = EoNy (D.11)

Now procedure Py differs from Pg only in that the threshold is shifted by p. Thus,

the lower bound (D.3) also applies to the former, so we have
EoNw > exp{(h — p)w} (D.12)
Finally, combining (D.10)-(D.12) and applying (5.3), we obtain

Ts = No(6o)
M -EoNs

M - EoNw

v

> M exp{(h - p)w}

By substituting (D.4) and (D.9) into the definition of 7, we get the desired result:

I; log Ts
= h
K h'——vni: DS
h —
lm (h—p)w +log M

h—oo hty
<1 + Ellg(u)l) M

= s [o(w)] = 7

A%
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Chapter 6

An Adaptive Procedure for

Quickest Detection

6.1 Introduction

In Chapter 2, the problem of detecting a shift in the mean of a sequence of independent
random variables from §, to 0; was considered. There, Hy and H; were defined as
the “noise only” and “signal plus noise” hypotheses, respectively. It was shown that,
when both 6y and 6; are known, the optimal procedure based on Lorden’s criterion
is Page’s test implemented using the log-likelihood ratio.

While the assumption of known 6y and 6; is convenient for simplifying the problem,
in many applications one or both parameters may not be known exactly. In this
chapter, procedures for detecting a shift of unknown magnitude in the mean of a
random process are investigated. It is assumed throughout that 6, is known, but that
6, is unknown. This is a reasonable assumption, since it is often the case that the state
of a system is known or can be adequately estimated before the disorder occurs. For
example, in radar applications, the return under the ambient noise hypothesis (that is,
when no target is present) may be well-modelled as zero mean white Gaussian noise.

However, when a target does appear, the strength of the return, which induces a
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proportional change in the mean of the observables, is dependent on several variables;
these include the distance and size of the target, as well as propagation effects such as
scattering and multipath. In such an instance, if an incorrect value for §; were used
to model the system, the actual performance could deviate greatly from that which
was computed based on the assumed parameter values.

The actual distribution of the random variables depends on the particular appli-
cation. We choose to focus on the case of Poisson observables, although the basic
techniques can be used for other distributions as well. Disorder problems with Poisson
observables have potential applications in many areas. For example, various medi-
cal imaging techniques involve the generation of a picture whose pixel intensities are
proportional to the number of photons incident on the detector. In many cases, the
safety of the patient necessitates keeping the radiation dose at a minimum, resulting
in relatively low photon counts; in this case, the Gaussian assumption often used in
image processing may be invalid. ' A sequential detection scheme which incorpo-
rates the Poisson assumption directly could be used in the line-by-line detection of
boundaries in the image. There are also queueing system applications: one might
wish to detect changes in highway traffic flow or in packet arrival times at a server,
both of which are often modelled using the Poisson distribution. Finally, in optical
communications, the variation in the arrival rate of photons at the receiver could be
monitored.

The problem is stated precisely in Section 2. Next, in Section 3, we review some
of the commonly used approaches for detecting jumps of unknown magnitude in
the mean and discuss the advantages and disadvantages of each. In Section 4, we
introduce a new adaptive procedure for detecting such a change with the following

properties: 1) the procedure is recursive, making it useful where an on-line algorithm is

1Tn other words, there may be an insufficient number of samples for the Central Limit Theorem
(leading to the Gaussian assumption) to be applicable.




Chapter 6: An Adaptive Procedure for Quickest Detection 180

desired, and 1) the performance is similar to that of the optimal Page’s test when the
true 6, is known. This procedure consists of two independent stages which operate
sequentially. The first stage is a version of Page’s test that is useful in detecting
jumps of at least some minimum known magnitude. The second stage is an adaptive
version of the classical sequential probability ratio test which incorporates an on-line
estimate of the mean of the observables. In Section 5, the performance of the adaptive
procedure is analyzed and computed for several examples. Due to the difficulty of
obtaining closed-form analytical expressions, most of the results in this chapter are

based on Monte Carlo simulations. 2

6.2 Problem Statement

Let f(z | 8) denote a density function with mean 6. Let X;, X, ... denote a sequence

of random variables generated under the following hypotheses:
Ho: Xi~ fo(z) 2 f(z | 6o), i=12...,m—1
H: Xi~fi(z)2 f(z|6), 6,€0 i=mm+1,...
Here, © is the set of all permissible values of §;. Throughout, we will take

O2 {6]6> 6 +uwo}

where vo > 0 is the minimum possible jump in the magnitude of the mean, which is
assumed to be known. * That is to say, #; = 6+ v, where v > vo. Since 6, and 6, are
constants, we see that the system undergoes a one-time shift from 6 = 6, to § = 6, at

the disorder time m. The goal is to determine the presence of the disorder as quickly

2 An earlier version of this procedure appears in [5].

3In many applications, the disorder can take on a continuum of values. In such cases, Vp is chosen
to be the minimum change of interest to the designer, as opposed to the minimum change which can
occur.
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as possible. In other words, we wish to minimize the expected delay in detection D
for a desired mean time between false alarms T'. *

As discussed in Chapter 2, when both 6 and 6; are known, the optimal procedure
is Page’s test implemented using the log-likelihood ratio processor, g(z) = log -’;;J(‘—;l)
However, it is often the case that one or both of 8y and 6; are unknown. In the
sequel, we investigate the case where pre-disorder mean 6, is known, but the jump
magnitude v is unknown. In particular, the focus will be on jumps which occur in
the rate parameter of the Poisson distribution. Thus,

(007)"‘ g=b7

fo(m)z 2zl ,.’1}20,1,...

and
_ (Bur)T e

z!

f]_((D) ,EZO,].,...

where 6 is known and 6; € ©. ® For simplicity, we will let 7 = 1 throughout. There
are many applications involving the Poisson distribution where quickest detection

procedures would be useful, as discussed in the previous section.

6.3 Conventional Procedures

In this section, some established approaches for detecting jump changes of unknown
magnitude are outlined. The most direct approach to this problem involves replacing
all of the unknown quantities with their respective maximum likelihood (ML) esti-
mates. For the present problem, the unknowns are the disorder time m and the jump
magnitude v. The resulting procedure is called the generalized likelihood ratio test
(GLRT).

4See Chapter 2 for the precise definitions of D and 7.
5Notice that a Poisson random variable with rate parameter 6 has a mean and variance both
equal to 87. Therefore, the jump in 8 results in a change not only in mean, but also in variance.
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At each time instant n, the pair (k,v) is chosen to maximize the log-likelihood

ratio

) fl(xl,...,an oy, f@] bt y)
lg[fo(xl,...,xa 218 5T

Define the test statistic

5o =gy Soten T

The procedure is then to declare a disorder at time n in case
Sp >

The threshold 7 can be set based either on a criteria of minimum false alarm rate or
maximum expected delay. The GLRT is also useful when the probability densities

have parametric uncertainty. For example, if the noise densities were known to be

Gauss-Gauss mixtures

0= oo | it )

an ML estimate of the contamination factor £ could also be incorporated into §,, in

a straightforward manner.

The GLRT is similar to Page’s test in the sense that the test statistic S, is just
the likelihood ratio of all samples up to the current time instant. In fact, the optimal
Page’s test is just a degenerate version of the GLRT where © = {6;}. Unfortunately,
the GLRT has several undesirable properties. First, unlike with Page’s test, an ex-
haustive search must be performed over all £ = 1,2,...,7n and all possible § € ©. As
a consequence, the GLRT does not readily admit a recursive implementation. Second,
since m € {1,...,n}, the search region increases linearly with n. ® Third, at each

time n, all past and current observables Xj, ..., X, must be stored.

6In practical implementations, however, the search region would usually be restricted to some
finite interval. Another approach might be to employ some “intelligent” processing which only
retains those disorder time candidates which are the most probable based on the past data.
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Another approach when the jump magnitudes are unknown is to simply use the
optimal procedure designed for the minimum jump v. That is, implement Page’s
test using the processor

f(z | 6o + o)
g(z) =log ———F7—=
() =18 = a8

Recall that Page’s test was defined using the test statistic
Sn = max {Sn-1 + 9(Xn), 0}

where a disorder is declared when S,, > h. Here, we refer to this approach as Hinkley’s
procedure, but it is also known as the Page-Hinkley test for the case when the noise
is Gaussian (and so g(z) is linear) [3].

In considering the use of Hinkley’s test, care must be taken to ensure that the
log-likelihood ratio is increasing (monotonic); such is the case with the Gaussian and

Poisson distributions. When this is so, observe that
0 < Elg(z) | 6o + vo] < E[g(z) | 66 + v]

for any v > vo. Since the performance is proportional to this expectation (cf. the
definition of 77 in Chapter 2), we see that the minimum performance is achieved
under the minimum jump scenario. Thus, one can design the procedure to guarantee
a nominal level of performance via the selection of the threshold A. In cases when
the log-likelihood is not monotonic (for example, with the Gauss-Gauss mixture),
Hinkley’s test might be a poor choice if the true jump magnitude could take on
values in a large range. An alternative would then be to use a suitable monotonic
nonparametric nonlinearity for g(z), such as the sign detector or dead-zone limiter.
The performance of Page’s test using these processors with known jump is investigated
in [4]; a similar analysis could be done when the magnitudes of the jumps are unknown.

Since Hinkley’s procedure is a version of Page’s test, it is desirable in that it can

also be implemented recursively as explained in Chapter 2. Examples of applications
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which utilize Hinkley’s test are line-by-line edge detection [1], where the intensities on
each side of the boundaries are unknown, and the detection of changes in the quality
of links in communications networks [6], where deviations in the nominal probability

of bit error are monitored.

Another class of detectors involves the computation of the sample derivative of
the mean of the sequence of random variables. This is done by computing a weighted
difference of a subset of the samples before and after the hypothesized disorder time.
This gives rise to so-called filtered derivatives detectors.

In [2], two examples of this type of detector are examined: the integrating filter

and a “triangular” filter. For the integrating filter, the statistic

Xn+l - Xn-—l

Z, =
21
is used to approximate the derivative of the mean. When Z, exceeds a threshold, a

disorder is declared. The statistic

_ (Xnt1 4 -+ Xogt) — (X1 + ...+ Xnt)
= 7

Zn

is used for the triangular filter in a similar manner.

It is shown [2] that for the filtered derivatives algorithms, both T and D are
exponential functions of the chosen threshold. However, for Hinkley’s test, T is an
exponential function of the threshold, while D is a linear function of the threshold.
A consequence of this fact is that for large T, the value of D will be much smaller
for Hinkley’s test than for the filtered derivatives procedures; hence, it is concluded
in [2] that Hinkley’s test is superior to filtered derivatives procedures. Furthermore,
with respect to the GLRT, Hinkley’s procedure has the advantage of being recursive.

Therefore, the performance of Hinkley’s procedure will be included in the analysis to

follow.
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6.4 An Adaptive Procedure

The discussion of the previous section motivates us to seek out a procedure with the
following properties: i) the procedure is recursive, making it useful when an on-line
algorithm is desired, and i) the performance is similar to that of the optimal Page’s
test when the true #; is known. In this section, a heuristic procedure is presented
with these goals in mind.

In general, for practical detection and estimation problems, it is often the case
that at least one of 8y and #; are unknown. A common approach then is to use
estimates of the parameters, obtained either on-line or via some historical data. For
example, suppose that the samples are distributed as either N'(6y, %) or N (8;,0?) at
all time instants (i.e. there is no disorder); this is just the classical hypothesis testing
problem. When 6;, 7 = 0, 1, are known, the sample mean provides a sufficient statistic
for deciding between the two hypotheses [8]. For the related composite hypothesis
testing problem where the means are unknown and 8y < 6 < 6} < 6, this same
procedure can also be used, where the performance does not fall below that of the
case where 6, =0, 1 =0, 1.

For the disorder problem, however, this approach is often not feasible for the
following reason. Before the disorder time, all of the data is generated according to
fo(z). If m is relatively large, resulting in a long wait before the disorder occurs,
many observables will be available to obtain an estimate of 8,. This is the case, for
instance, in radar problems where the presence of a target occurs only after a long
period of time. Even if m is small (excluding the degenerate case where m = 1), we at
least know that some of the samples were generated under fo(z). By comparison, the
estimation of §; is more difficult for two reasons: ¢) the disorder time m is unknown,
and therefore so is the instant at which the observables are generated from f1(z), and

i) the use of many samples from fi(z) in order to obtain an accurate estimate for 6,
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1s in competition with the desire to make the decision as quickly as possible. As is
usually the case with any sequential detection scheme, the longer one is able to wait,
the more accurate a decision can be made.

Based on the above discussion, it is clear that it would be unwise to attempt to
estimate §; based on all of the past observations. Instead, it would be desirable to
separate the pre- and post-disorder observables for the purpose of estimating 6, and
6,. If m were known, then this would be easy to do; of course, this is also not useful
since we would then know when the disorder occurred, which is exactly the problem
in the first place!

With this difficulty in mind, we now propose an alternative procedure for detecting
jumps in the mean of unknown magnitude, maintaining the assumption that the
magnitude of the jump is at least some minimum value v. This procedure consists
of two separate tests in series, which will be denoted 77 and 79. Test 77 is exactly
the Hinkley test introduced in Section 6.3. Test 79 is a variation on the classical
two-sided SPRT of Wald [7].

When using the SPRT to distinguish between two hypothesized means, it is usually
assumed that the two means are known a priori. However, here the value of 6, is
not known, so we instead use the ML estimate based upon the samples X1, ..., X,,
where j is the most recent stopping time of 77 and n is the present sample time. Thus,
test 79 is similar to an “estimator-correlator” in the sense that an estimate of the true
parameter is correlated with the present data via the log-likelihood ratio; therefore,
we call the resulting procedure the estimator-correlator sequential probability ratio
test (ECSPRT). 7 Let Gminé—-ﬂo + Vo denote the minimum possible value of ;. The
test statistic for the ECSPRT is

7 = Xi §n

"This procedure is not an estimator-correlator in the true sense, but the idea is similar.
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where the decisions as to the occurrence of a disorder are made as follows:
> b, decide for H;
A < a, ~ reject H,
€ (a,b), compute Lois
Here 6,, = max{bmin, ?n} and 8,, is the ML estimate of 6; given n observations, which
in this case is the sample mean, and (a,b) is called the continuation region, where

a < 0 < b. Note that 8, can be computed recursively as

~ n—14

b = by + an, b=X
n

Note also that as n — oo, 9~n 3% 9, when # = 6, and gn 2% Gpnin when 8 = 6.
Thus, for large n, the ECSPRT behaves like the optimal SPRT under H;, but like
the “minimum jump” SPRT under Hy.

The configuration of the overall adaptive detector, termed the composite detector,
is shown in Figure 6.1. The purpose of test 77 is to signal the possibility of a disorder.
If an alarm sounds during this test, the second test is initiated. If test 79 results in
the acceptance of Hy, then the composite test is terminated and a disorder 1s declared.
If H; is rejected by 79 the composite test is “reset” and 77 is initialized and started
once again. Thus, a false alarm occurs in the composite test if and only if it occurs
in both 77 and 7.

Let A > 0 denote the threshold in 77, and let @ < 0 < b denote the lower and
upper thresholds, respectively, in 79. The composite test is then given by the following

algorithm:
1. Initialize: 2 =0, So=0

2. Hinkley’s Test:
1=1+41
S; = max{0, Si—1 + g(X;)}
if S; < h, goto 2
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composite test

start
—.—.Jl_»
: declare
! a disorder
|
Figure 6.1: Dllustration of the composite test.
3. k=141
4. ECSPRT:
1=1+41
R £(X;[83)
Si = Xj-k 108 fixiia)

if a < 5; < b, goto 4
if §5; < a, set S; = 0 and goto 2

5. Declare a disorder at time 2

where 8; is based on samples Xz, ..., X;.

In Section 6.3, it was mentioned that when the log-likelihood ratio is not mono-
tonic, the performance of Page’s test designed for the minimum jump cannot be
guaranteed if the magnitude of the disorder is actually larger. It was suggested that
a viable alternative would be to substitute an appropriate memoryless nonlinearity
g(z) for the log-likelihood ratio. The same thing can be done in test 7;, which is also

just Hinkley’s test.
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6.5 Performance Evaluation

The performance of the composite test is evaluated by computing D versus log T' for a
range of parameters, allowing us to make direct comparisons with the optimal Page’s
test and with Hinkley’s test. An expression for the average sample number (ASN) of
the composite test in terms of tests 77 and 79 is determined. It is not clear how to
obtain explicit expressions for the performance of the ECSPRT, and so we use Monte
Carlo simulations to get an estimate of the true performance, as explained below.

Several examples that illustrate the performance of the composite test are given.

6.5.1 Analysis

Denote the ASN of 7}, when the rate parameter is 6 as Ni(f) for £ = 1,2, and
let N2(8) and NZ(0) be the ASN of Ty given that the test terminated at the lower
and upper boundary, respectively. Tests 77 and 75 are independent since the sets
of samples that determine their outcomes are disjoint and the samples themselves
are independent. Therefore, the two sub-tests can be analyzed separately and these

results can then be combined for the composite test.

Denote the ASN of the composite test under 6 as A (#), and let
a(f) = Pr{Ty terminates at the upper boundary b | 6}

and

B(0) =1 — a(6) = Pr{Ty terminates at the lower boundary a | 6}

For notational convenience, we temporarily drop the explicit dependence on 6. N
is the sum over j of the expected time to cycle though 77 and 79 exactly j times
weighted by the probability of exactly j cycles occurring before the test terminates.
We have

N = (M+A2) - a+ (@M +NF+ME) - of+
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(3M1+ 205 + A2) - of? + ...
= o Y M+ M+ (N + AF)| B
1=0
_ 1 b, B i
_1—ﬂN1+N2+I__ﬁN2
N+ N,
=S5

where we use the fact that A, = SN2 + aN?}. Therefore, the ASN’s under each

hypothesis can be obtained by computing

_ N1(9,') -+ ./\/2(9,-)
- a(&i) ’

N(6o) and N(6;) above are analogous to the T' and D of Page’s test, respectively.

N(8:) i=0,1 (6.2)

Thus, the two tests can be compared by examining D vs. logT and N(6;) vs.
log N (6y) side by side.

The form of the expression in (6.2) sheds some light on the nature of the composite
test. Observe that the ASN is inversely proportional to «(f), the probability of
crossing the upper threshold in test 7. When 6 = 6;, the test statistic in Ty will
have a positive drift, and so the test will terminate at the upper boundary with high
probability. Therefore, a(f;) will be relatively close to unity, and so the values of
Ni(6:) and N,(6;) will dominate the ASN expression. On the other hand, when
6 = 6o, the test statistic exhibits a negative drift, resulting in a much smaller a(f,).
In this case, a(fy) dominates the ASN.

Unfortunately, it is not clear whether closed form expressions for a(8) and N,(6)
can be obtained. Therefore, the approach here is to use Monte Carlo simulations to

compute the ASN’s. An unbiased estimator of N (6) is
1 K
NG ==Y N (6.3)
K k=1

where a total of K trials are used, and Ny is the stopping time of trial k£ when the rate

parameter is 6. In order to obtain statistically meaningful results, a large number
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of trials must be performed for each set of parameters, since the variance of N (9)
decreases as 3. One problem with this method, though, is that when 8 = 6, the
expected stopping time for each trial increases exponentially in the thresholds b and
h, and so the time required to complete each trial becomes intractably large.

One way around this problem is to estimate the parameters that appear in (6.2)
separately. Observe that the A1(6) is the ASN of Hinkley’s test, a quantity which
can be computed using a number of techniques as explained in Chapter 2. Thus, this
quantity can be precomputed for the desired threshold h. The remaining parameters,
N3(6) and (6), can be determined by direct Monte Carlo simulation. The advantage
of this approach is that only the simulation of the ECSPRT is performed, as opposed
to the entire composite test, and therefore the delay associated with the execution
of test 73 is circumvented. The ASN of 7; can be obtained exactly as in (6.3), while

a(8) can be approximated by
. 1 &k
a(6) = = S T{sk, >b|6}
k=1

where
1, if A occurs

T{A} =

0, otherwise

denotes the indicator of event .4 and S* is the ECSPRT test statistic for trial k at

time sample 7. &

6.5.2 Comparison of the Performance of Each Procedure

In this section, the composite detector is compared to Hinkley’s test and the quickest
detector. Although the latter is not realizable in practice since 6; would have to

be known, it is included as it is the optimal test and therefore provides a useful

81t is clear that the frequency of the event {S}‘ﬁ >b| 0} is inversely proportional to the value
of b. Thus, it is still possible to select b large enough so that even the alternative method is too
computationally burdensome.
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standard for performance comparison. Each of the detectors was simulated with
Poisson observables with normalized rates 8 = 10 and 8,,;» = 11 for several values
of §;. One can think of §, as the rate under the “noise only” or ambient hypothesis,
while 01. = 0,4 + 0 is the “signal plus noise,” 8,;y > Omin — 0. The signal-to-noise
ratio (SNR) is 101log; (sig/00). For example, one can see that the minimum jump of
interest here is —10dB.

Realizations of the composite test under hypotheses Hy (for §; = 15) and Hy are
shown in Figures 6.2 and 6.3, respectively. In the first figure, observe that a disorder
is declared only after both of the upper thresholds h (of 7;) and b (of 7;) are crossed.
In this example, each of tests 7; and 7; are performed once. In Figure 6.3 no disorder
occurs and, as one would want, none is indicated (i.e., the threshold b is never crossed
in 7). However, notice that test 77 signals an alarm two times, but each time test
7, quickly rejects the supposition that a disorder occurred. This illustrates the “two
step” nature of the composite test.

For the composite test, A'(6;) is obtained via direct Monte Carlo simulation, while
N (6) is obtained by computing N;(f) and simulating the ECSPRT parameters as
explained in Section 6.5.1. Figure 6.4 shows a plot of &(6,) versus the upper threshold
b for 7,. Observe that @(f,) is an exponential function of b. The smallest value, that
corresponding to b = 13, was obtained by performing 300,000 trials, which produced
15 false alarms and took several days to run on a Sun 4 workstation.

Figures 6.5-6.7 illustrate the performance of the composite detector as compared
to the optimal Page test (the “quickest detector”) and Hinkley’s test. For the com-
posite test, the plots were generated using Monte Carlo simulations as explained in
Section 6.5.1. For the quickest detector and Hinkley’s test, the Markov approximation
technique discussed in Chapter 2, Section 4 was used.

The comparative performance of the composite detector when 6; = 50 is shown

in Figure 6.5; this corresponds to a SNR of 6 dB. The samples were obtained by
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Figure 6.2: A sample realization of the composite detector when a disorder occurs. Here
6; = 15,0, = 11, and 6y = 10. The vertical bar indicates the true disorder time.
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Figure 6.3: A sample realization of the composite detector when no disorder occurs. Here
Omin = 11 and 8y = 10.
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Figure 6.4: @(6p) versus b.

letting b take on uniformly spaced values from 1 to 13. We see that the composite
detector with h = 6 has both a greater expected delay (ED) and mean time between
false alarms (MFA) than that for A = 3, for a fixed b. This occurs since a higher
threshold in test 7; means more samples will be required to cause an alarm. We
also note that the slope of the performance curves for the composite test and that of
the quickest detector are similar. This results from the fact mentioned in Section 6.4
that the ECSPRT behaves (asymptotically) like the optimal SPRT under H; and like
the “minimum jump SPRT” under Hy. From these findings, one might be tempted
to make h = 0 (i.e., do away with 7; completely). However, this would increase
the likelihood that the disorder will occur during test 79, which also increases the
likelihood that 8, will be based on samples under both fo and f;, an undesirable
condition as discussed in Section 6.4. In the present analysis, the MFA and ED are

computed assuming that the disorder occurs when test 7; is active, a good assumption
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when h is not close to zero. The more general case where the disorder may occur
when either test is active is left for future study.

Figure 6.6 illustrates the case where 6; = 20, for an SNR of 0 dB. For both this
case and that of Figure 6.5, observe that the composite test outperforms Hinkley’s
test for higher MFA; however, the particular MFA at which this occurs depends upon
the choice of parameters and #;. This fact suggests that the decision to use the
composite test or Hinkley’s test depends on the desired MFA. Again notice that the
slope of the composite performance curvc; is approximately the same as that of the
quickest detector, but that there is an offset of a few samples between the two curves.
This offset arises from two factors. First, the minimum number of samples required
for the composite test is two, instead of only one for the quickest detector since the
former is composed of two tests. Second, an additional delay is incurred in the former
due to the additional time required for 8, to converge “close enough” to 6, to allow
the ECSPRT to react in a similar manner as the quickest detector.

Finally, Figure 6.7 shows the case where 6; = 11, for a SNR of —10 dB. This
is the case where the true jump is that of the minimum assumed magnitude. Here,
the quickest detector and Hinkley procedure are the same test, and so only one
performance curve is shown for both. The performance curves of the composite test
are similar to that of the quickest detector. In particular, the slopes of the former
appear to be only slightly greater than the latter. This is not surprising, since the
optimal performance is achieved by using the quickest detector. We can also observe
that the offset between the two curves becomes less critical in that the percentage

increase in ED of the composite test over the quickest detector is smaller for smaller

6.
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Figure 6.5: Performance of the quickest, Hinkley, and composite detectors for ; = 50
(SNR = 6 dB). For the composite detector, a = —5, h =3 ((0’s) and 6 (x’s).
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Figure 6.6: Performance of the quickest, Hinkley, and composite detectors for §; = 20
(SNR = 0 dB). For the composite detector, a = —5, h = 3 ((O’s) and 6 (x’s).
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6.6 Conclusions

In this chapter, an adaptive approach for detecting a jump change of unknown mag-
nitude in the parameter of a random process was introduced. Our approach, termed
the composite test, is a heuristic procedure created with the goal of retaining the ben-
eficial properties of the optimal Page’s test, the quickest detector, even though the
jump magnitude is not known. Our examples focused on the case where the disorder
1s a jump in the rate parameter of a Poisson process, but, as discussed in Section 6.4,
the procedure can be applied to other processes as well.

In Section 6.5, the composite test was analyzed. It was shown that the perfor-
mance can be expressed in terms of the performance of each of the sub—tests 7; and
7,. Because closed form expressions for the ECSPRT were not available, Monte Carlo
simulations were used instead.

The performance of the composite test relative to the quickest detector and Hink-
ley’s test, which is Page’s test designed for the jump of minimum magnitude, was
evaluated using several examples. It was shown that the composite test outperforms
Hinkley’s test for higher mean time between false alarms. It also exhibits performance
that is similar to the quickest detector in the sense that the slopes of the composite
and quickest detectors are similar; therefore, the performance of these procedures
will be asymptotically similar, differing by a bias which is proportional to the true
jump magnitﬁde. This work shows that the composite test is a viable procedure for
detecting jumps in the mean of unknown magnitude.

There are several directions for future work. First, it would not be difficult to
evaluate the performance of the composite test for other distributions, and also for
the case where the samples are correlated. Second, it would be nice to obtain closed
form expressions for the performance of the ECSPRT, which would allow us to express

the performance of the composite test without the use of simulations. Finally, it would




Chapter 6: An Adaptive Procedure for Quickest Detection 199

be useful to develop an extension of the procedure to the multivariate case.
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Chapter 7

Conclusions

This thesis investigated quickest detection procedures for several types of disorder
problems. The objective throughout was to minimize the expected delay in detecting
the disorder, subject to a lower bound on the mean time between false alarms. The

contributions of this thesis are given below.

7.1 Contributions

Chapter 2 provided an overview of the foundations of work on quickest detection, and
served as a prerequisite for the rest of the thesis. The asymptotic performance measure
(APM) was shown to be a useful figure of merit, in that it allows us to characterize
the performance of a detection procedure using a single number. Consequently, the
asymptotically optimal procedure can be determined via the maximization of the
APM. Since the computation of the APM is not always feasible, a lower bound that
approximates the APM was used in the design process. It was shown that the log-
likelihood ratio is necessary and sufficient to maximize this bound. Several techniques
for computing the performance of procedures to detect disorders were also given.
Quickest detection procedures when underlying noise models were partially un-

known were considered in Chapter 3. Specifically, the e-contamination and total
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variation uncertainty classes were studied. The minimax robust quickest detector was
derived by applying the minimax criterion directly to the APM, and it was shown
that a saddlepoint solution exists for this problem. The minimax APM was shown to
equal the Kullback-Leibler (K-L) divergence, and so the least favorable distributions
are those which minimize this quantity; the robust processor is then the log-likelihood
ratio of the least favorable densities. Performance curves are generated which show
that the robust procedure works well for a number of members of the uncertainty
class, and in all but a few cases outperforms nonparametric techniques based on the
linear, sign, and dead-zone nonlinearities. For the weak signal case, we established an
equivalence between the APM, the classical efficacy, and Fisher’s information. The
weak signal robust detector was obtained by finding the least favorable distribution
for Fisher’s information. Performance curves were given to show the gains available
when robustness is built into the detection procedure.

The investigation of robust quickest detection procedures was continued in Chap-
ter 4 for the case where the mean and/or noise covariance of a multivariate Gaussian
process is uncertain. As in the previous chapter, the robust procedure is obtained by
applying the minimax criterion to the APM. It is shown that the robust processor is
exactly the robust discrete-time matched filter. Particular solutions were presented
for several different uncertainty classes, each of which is based on the deviation from
some nominal parameter set. Some performance curves were given which illustrate
the tradeoffs when there is a mismatch between the assumed and actual levels of
uncertainty. The applicability of the robust procedure to non-Gaussian multivariate
processes was also discussed. |

In Chapter 5, we examined the problem of designing quickest detection procedures
at the fusion center of a distributed detection system. An optimal procedure was de-

rived and compared to several alternative methods which are easier to implement in




Chapter 7: Conclusions 203

that they are recursive and require less computation. It was shown that a slight mod-
ification of the optimal scheme leads to a suboptimal procedure whose performance
differs negligibly from the optimal. A simple method for choosing the thresholds of |
the local detectors was presented; specifically, the thresholds were selected to max-
imize the asymptotic performance measure of the distributed system. A sensitivity
analysis revealed that the method results in overall system performance which is close
to optimal, even for small mean times between false alarms. Lastly, the relationship
between channel bandwidth and detection delay was evaluated. It was shown that
the optimum bandwidth is a function of signal strength. Perhaps contrary to in-
tuition, for weaker signals, the optimal performance did not result from the system
with the maximum bandwidth. Performance curves were presented which illustrate
the performance gain or loss as the bandwidth varies; these curves would be useful to
a designer who must make decisions based on the tradeoff between bandwidth cost
of bandwidth and system performance.

Finally, the disorder problem when a jump of unknown magnitude occurs in the
mean of a random process was investigated in Chapter 6. Optimal methods exist when
the jump magnitude is known (Page’s test using the log-likelihood ratio); we proposed
an adaptive procedure suitable when this information is not available. The procedure
consisted of two tests which operate in series. The first test signals a candidate
disorder time, which the second test then uses to form an estimate of the post-
disorder mean value. This estimate was then incorporated into an a,da,ptive version of
the well-known sequential probability ratio test. The average sample number (ASN)
of the adaptive procedure was derived and expressed in terms of the two sub-tests. It
was shown via simulation that the adaptive test has similar asymptotic performance
to the test which is optimal for known jump size. The procedure was implemented
to detect a change in the rate parameter of a Poisson process; however, it is also

applicable to other distributions.




